Wasser aus Talsperren ist in vielen Länder eine der wichtigsten Trinkwasserresourcen. Dies gilt besonders für aride Zonen, und/oder in Ländern mit hoher Bevölkerungsdichte. Allerdings sind diese Gewässer oftmals durch einen extrem euthrophen Zustand gekennzeichnet. Das Ziel dieses Projektes ist es, den Gewässergütezustand zu beschreiben, den derzeitigen Zustand der Gewässer in Hinblick auf Nährstoffgehalte und organische algenbürtige Schadstoffe zu erfassen, Ursachen, die zu einer Algenblüte führen zu bestimmen und Verfahren für die Aufbereitung zu Trinkwasser zu entwickeln. Dazu soll der Gütezustand ausgewählter Gewässer in den drei Ländern der Projektpartner (Deutschland, Israel, Jordanien) verglichen werden. Der Einfluss unterschiedlicher klimatischer Bedingungen (Mitteleuropa, Mittlerer Osten) und die unterschiedliche Nutzung der Gewässer auf deren Eutrophierung soll dabei besonders beachtet werden. Die klassischen Aufbereitungsverfahren Filtration, Adsorption, Oxidation und Desinfektion sollen auf die algenspezifische Rohwasserqualität optimiert werden. Die Ergebnisse werden sowohl hinsichtlich ökologischer Gesichtspunkte als auch hinsichtlich der Wassernutzung ausgelegt werden. Die Untersuchungen werden jeweils in Modellsystemen im Labormaßstab und im Technikumsmaßstab mit Realproben durchgeführt. Ein Probenaustausch ermöglicht die Bestimmung der unterschiedlichsten Parameter in den einzelnen Laboratorien der Projektpartner. Dazu gehört auch ein Austausch von Doktoranden, die Schulung von Mitarbeitern und die Durchführung von gemeinsamen Workshops.
Scientists from the Palestinian authority, Israel and Germany, all involved in different aspects of analytical research, have joined in order to conduct an environmental study, which aims to understand the fate of selected contaminants in a model ecosystem. For this purpose, two typical terrestrial sites in the Middle East, one in the Palestinian authority and the other in Israel, have been selected, comprising a partially polluted area and a natural reserve as a reference. In these areas, the fate (chemical and physical transformations) of typical pollutants such as heavy metals (Pb, Cu, Zn, Cd, Fe), metalloids (As, Sn, Sb), organic dyes and air contaminants (O3, NOx, SO2) will be studied. This will also involve the determination of all the environmental conditions for the chemical transformation, which should shed some light on the dynamics of the ecosystems. At the same time novel inexpensive sensors and analytical procedures will be developed, which are necessary for the analysis of contaminants in this area. The goals will be accomplished by combined efforts of all partners.
Trockengebiete bedecken große Teile der Landoberfläche und obwohl die Böden in Trockengebieten nur geringe Gehalte an organischem Kohlenstoff (OC) aufweisen, speichern sie einen erheblichen Teil der globalen OC-Vorräte im Boden. Derzeit ist es aber nicht möglich, die Auswirkungen der durch den Klimawandel prognostizierten Ausdehnung der Trockengebiete auf die Vorräte an OC im Boden vorherzusagen. Steigende Trockenheit beeinflusst die Prozesse des ober- und unterirdischen Streuabbaus und der Stabilisierung der organischen Bodensubstanz unterschiedlich. Es ist wenig bekannt über die Folgen zunehmender Trockenheit auf abiotische Prozesse des Streuabbaus wie Foto- und thermische Degradation sowie über Stabilisierungsprozesse der SOM, d. h. Aggregierung und Bildung von mineral-assoziierter organischer Substanz (MAOM) aus Blatt- und Wurzelstreu. Im Projekt werden wir einen einzigartigen Niederschlagsgradienten in Israel (gleiches Ausgangssubstrat) nutzen und die Hypothese testen, dass zunehmende Trockenheit zu einer zunehmenden Entkopplung der Mechanismen führt, die für den ober- und unterirdischen Streuabbau sowie für die Stabilisierung von SOM verantwortlich sind. Wir gehen davon aus, dass zunehmende Trockenheit den Abbau der Wurzelstreu stärker beeinflusst als den Abbau der Blattstreu. Des Weiteren nehmen wir an, dass zunehmender Niederschlag die Bildung von MAOM insbesondere aus Wurzelstreu fördert, während zunehmende Trockenheit einen höheren Anteil der Aggregierung an der SOM-Stabilisierung nach sich zieht. Wir werden den Streuabbau und die Stabilisierung von SOM untersuchen, indem wir 13C-markierte Streu (Spross, Wurzeln) einer einjährigen krautigen Pflanze entlang des Trockenheitsgradienten ausbringen. Den Einfluss der räumlichen Heterogenität der Vegetationsbedeckung wird berücksichtigt durch das Einbeziehen von Flächen unter sowie zwischen Sträuchern. Die Verwendung stabiler Isotope ermöglicht es uns, sowohl den Streuabbau als auch die Prozesse der SOM-Stabilisierung unter möglichst natürlichen Bedingungen entlang des Gradienten zu quantifizieren. Gemessene 13CO2-Flüsse im Feld werden mit den Informationen zum Einbau des 13C-Tracers in Fraktionen der SOM (gewonnen durch Dichtefraktionierung), EPS und der Aggregatstabilität kombiniert. Dies wird es ermöglichen, die SOM-Stabilisierungsmechanismen in Abhängigkeit der Trockenheit und der Vegetationsbedeckung zu erfassen. Die Ermittlung des Streuabbaus im Gelände wird mit Laborexperimenten kombiniert, um die Bedeutung abiotischer Prozesse für den Streuabbau zu quantifizieren. Unser komplementärer Ansatz wird ein umfassendes Bild über die Steuerung des Streuabbaus und der SOM-Stabilisierung in (semi)ariden Klimazonen ermöglichen. Dies wird die Grundlagen verschiedene Modellierungsansätze (Boden-C, Erdsystem) in ariden und semiariden Regionen bei zunehmender Trockenheit entscheidend verbessern.
In tropischen Meeren stellen vielraeumig gegliederte Hafenanlagen z.T. gute Ansiedlungsmoeglichkeiten fuer Korallen dar. Die natuerlich und anthropogen bedingten Voraussetzungen fuer Entwicklung und Nichtgedeihen von Riffkorallen-Gemeinschaften werden an verschiedenen Hafenanlagen bei Eilat untersucht. Messung von Stroemung, Licht, O2, Sedimentation mit Hilfe der Tauchmethode. Ergaenzende Experimente an der Ruhr-Universitaet. Besonderes Augenmerk gilt dem Einfluss der Sedimentation auf das Korallenwachstum.
Mit Hilfe von systemanalytisch aufgebauten Programmen versuchen wir den Befallsverlauf von Pflanzenkrankheiten zu simulieren und die darauf einwirkenden Faktoren zu analysieren. Weitgehend abgeschlossen ist der Simulator Epidem fuer Apfelschorf. In Bearbeitung befindet sich ein Simulator fuer Gerstenmehltau. Mit einer Arbeitsgruppe von der Agric. Research Organ. (Volcani Center) Israel wird an einem von der DFG gefoerderten Vorhaben ueber Kompensationsphaenomen in Angriff genommen.
Bacteria of the genus Legionella cause waterborne infections resulting in severe pneumonia. In Europe, 70Prozent of the cases of the so-called Legionnaires disease (LD) originate from strains of L. pneumophila serogroup (Sg) 1, 20Prozent from other L. pneumophila serotypes and 10Prozent from other Legionella species. In contrast, in the Middle East most legionella infections are due to L. pneumophila Sg3. The overall objective of this project is to advance current knowledge on the ecology of legionella in freshwater systems, the environmental factors affecting their occurrence, virulence potential and infectivity and to understand their transmission to humans. We will analyze the major environmental factors regulating the abundance of legionella, such as grazing and assimable dissolved organic carbon, because the occurrence of these heterotrophic bacteria in aquatic habitats is highly dependent on these factors. We will use an integrated molecular approach based on highresolution diagnostics of environmental samples and clinical isolates to determine the abundance, activity and virulence potential of Legionella populations in-situ. Combining environmental and molecular epidemiological data, we aim at understanding the link between ecology and population dynamics of legionella and cases of LD. The project will result in a novel understanding of the molecular epidemiology of legionella and provide new surveillance tools and strategies to prevent LD.
In Wüstenökosystemen wird die zeitliche Dynamik durch Nass-Trocken-Zyklen bestimmt, und diese werden durch den Klimawandel zunehmend gestört. Niederschläge in Wüstenökosystemen lösen einen unmittelbaren CO2-Anstieg aus, verbunden mit erheblichen Emissionen von Petrichor, dem "Geruch von Regen". Dieser erdige Geruch setzt sich aus verschiedenen flüchtigen organischen Verbindungen (VOC) zusammen, die mit dem Wind über große Entfernungen transportiert werden. Die Wassertröpfchen, die mit trockenen Böden in Berührung kommen, setzen zuvor gebundene VOCs frei und regen Bakterien und Pilze zur Neuproduktion von VOCs an. Sechzig Jahre nach der ersten Beschreibung von Petrichor ist immer noch wenig über seine Rolle in der Bodenökologie und seine Bedeutung für die Atmosphärenchemie bekannt.Biotische Interaktionen zwischen Mitgliedern mikrobieller Gemeinschaften im Boden erfolgen durch den Austausch von Signalmolekülen. Flüchtige Signale wirken auf einer größeren räumlichen Skala als lösliche Verbindungen und werden zunehmend als entscheidende Infochemikalien zur Vermittlung von intra- und interspezifischen Interaktionen zwischen Bodenmikrobiota anerkannt. Dennoch ist wenig über die spezifischen Funktionen von VOCs und ihre Rolle bei der Vermittlung von Wechselwirkungen zwischen Organismen bekannt, insbesondere in Trockengebieten.Die Emissionen von Petrichor aus Trockengebieten wie der Negev-Wüste (Israel) werden sich in naher Zukunft verändern, da die Niederschlagsmenge bis 2050 voraussichtlich um ~40 % zunehmen wird. Biogene flüchtige organische Verbindungen (VOC) - insbesondere Terpenoide und Benzoide - sind als wesentliche Akteure der Atmosphärenchemie bekannt und beeinflussen das Klima durch Wolkenbildung und die Entstehung sekundärer organischer Aerosole die Strahlungsenergie absorbieren und streuen. Mikrobielle Bodengemeinschaften dominieren die Wüstenökosysteme, die sich über 20 % der Erdoberfläche erstrecken. Daher ist es dringend erforderlich, die Rolle der mikrobiellen Gemeinschaften im Wüstenboden für die Chemie der Atmosphäre zu untersuchen. Unser Ziel ist es, die Quellen, Regulierungsmechanismen und Kontrollfaktoren der VOC-Emissionen in Wüstenökosystemen zu verstehen, was für die Erstellung umfassender globaler Klimaprojektionsmodelle von größter Bedeutung ist. Zu diesem Zweck wollen wir Veränderungen in der Petrichor-Zusammensetzung entlang eines Trockenheitsgradienten in der Negev-Wüste (Israel) quantifizieren und charakterisieren, die gesamte aktive mikrobielle Gemeinschaft (Eukaryonten, Prokaryonten, Archaeen) nach Niederschlagsereignissen in den Biokrusten der Wüste und in tieferen Bodenschichten identifizieren, mit Hilfe von Netzwerkanalysen Kandidaten für die Produktion von und die Reaktion auf VOC ermitteln und die Rolle der VOC durch Experimente mit mikrobiellen Isolaten und durch die Anwendung von Inhibitoren der wichtigsten Petrichor-VOC in Böden verifizieren und die globalen Auswirkungen der Petrichor-Emissionen hochskalieren.
Die Form des Stickstoffangebotes übt einen nachhaltigen Einfluss auf Wachstum und Produktivität der meisten Kulturpflanzen aus. Hierfür werden verschiedene Prozesse verantwortlich gemacht. Ammoniumernährung übt einen nachhaltigen Einfluss auf die Quantität und Qualität der Gehalte an Aminosäuren, organischen Säuren und Zucker aus. Da alle diese Inhaltsstoffe die ernährungsphysiologische und sensorische Qualität der pflanzlichen Erzeugnisse stark beeinflussen, ist davon auszugehen, dass die Form der N-Ernährung einen größeren Einfluss auf die Qualität ausübt, als dies gemeinhin angenommen wird. Eine solche Vermutung wird noch dadurch unterstützt, dass durch Ammoniumernährung i.d.R. die Kaliumgehalte stark vermindert werden, was wiederum nicht ohne Auswirkungen auf die Qualität bleibt. Im Rahmen des vorliegenden Projektes sollen die physiologischen Auswirkungen der Form der N-Ernährung auf die Wassernutzungseffizienz, die Resistenz gegenüber Wasser- und Salzstress sowie auf qualitätsbestimmende Inhaltsstoffe untersucht werden. In einer anschließenden Phase sollen die Ergebnisse genutzt werden, um die Ernährungssituation der Pflanze in diesen Stressstituationen, die sowohl in Israel als auch in Palästina verbreitet auftreten, gezielt zu verbessern.
Die Messung von Substanz-spezifischer Stabilisotopenfraktionierung in Grundwasserschadstoffen (Compound-Specific Isotope Analysis, CSIA) ist ein etablierter Indikator für Abbau stromabwärts von Kontaminationsquellen in Altlasten. Laufende Forschungsarbeiten konzentrieren sich darauf, diesen Ansatz nun auch für diffuse (d.h. nicht Punktquellen) Kontaminanten wie das Pestizid Atrazin im niedrigen µg/L bis sub-µg/L Konzentrationsbereich vorzuspuren. Hier bietet CSIA einen machtvollen Ansatz, Abbau sogar über Zeitskalen sichtbar zu machen, die sonst Untersuchungen gar nicht zugänglich wären, oder wenn fluktuierende Konzentrationen eine Abschätzung erschweren. Der Ansatz beruht auf der Beobachtung, dass sich Isotopenwerte von Atrazin während Biotransformation ändern und somit ein Konzentrations-unabhängiges Indiz für Abbau liefern. Für einen Durchbruch von Spurenschadstoff CSIA im Feld sind jedoch kritische methodologische Fortschritte nötig. (1) Niedrige Schadstoffkonzentrationen (sub-µg/L) in Grundwasser treten in Gegenwart viel höherer Konzentrationen (mg/L) von gelöstem organischen Kohlenstoff (DOC) auf, was selektive und sensitive Spurenschadstoff CSIA stark limitiert. Mit Bakkours Expertise in selektiven Anreicherungs- und Aufreinigungstechniken zielen wir auf entscheidende Verbesserungen für empfindliche CSIA von Spurenschadstoffen in Grundwasserproben. (2) Isotopenfraktionierung in Laborexperimenten wird typischerweise bei viel höheren Konzentrationen (mg/L) als im Grundwasser (sub-µg/L) bestimmt. Mit Elsners Expertise in Chemostat und Fed-Batch Experimenten werden wir Isotopenfraktionierung von Atrazin im niedrigen Konzentrationsregime hinterfragen, als belastbare Basis für Feldinterpretationen. (3) Um als Indikator für Spurenschadstoffabbau zu dienen, müssen die Abbau-induzierten Änderungen in Isotopenwerten größer sein als die Bandbreite in kommerziellen Produkten. In Israel, wo Atrazin noch routinemäßig eingesetzt wird, werden wir daher in einer gemeinsamen Anstrengung Atrazinisotopenwerte (d13C, d15N) im Küstenaquifer analysieren und mit kommerziellen Atrazinprodukten vergleichen. (4) Um solche Isotopen-basierten Feldergebnisse kritisch zu hinterfragen, nutzen wir Bernsteins Expertise in mikrobiologischen Methoden der Hydrologie. Die vereinten Fortschritte werden es uns ermöglichen, die Anwendbarkeit von Spurenschadstoff CSIA für niedrige Konzentrationen im Grundwasser grundlegend zu erforschen.
Der Wurzelgallennematode Meloidogyne javanica und der Erreger der Fusariumwelke, Fusarium oxysporum f.sp. lycopersici sind bedeutende Welkeerreger im Gemüsebau des Mittleren Ostens wie auch weltweit. In der Praxis treten beide Erreger häufig gemeinsam auf und verursachen synergistische Ertragsverluste. Die Bekämpfung beider Pathogene gestaltet sich als äußerst schwierig, wobei eine völlige Ausschaltung beider Pathogene in der Regel kaum möglich ist. In den vergangenen Jahren wurde das durch die beiden Pathogene hervorgerufene Welkesyndrom primär durch Bodenbegasung mit Methylbromid bekämpft. Die völlige Abhängigkeit von diesen zwar wirkungsvollen, aber auch umweltschädigenden Pflanzenschutzmitteln hat die Entwicklung alternativer Bekämpfungsverfahren über Jahre verhindert. Der Einsatz von Methylbromid wird ab dem Jahre 2001 verboten, da dieses Pestizid das Bodenleben zu 90 Prozent abtötet und in erheblichem Maße zur Zerstörung der Ozonschicht beiträgt. Die Entwicklung wirkungsvoller und umweltfreundlicher Bekämpfungsverfahren stellt eine der aktuellen Herausforderungen in der Phytomedizin dar. Eine der Möglichkeiten soll in dem vorliegenden Projekt näher untersucht werden. Durch Steigerung der Effektivität antagonistischer Mikroorganismen sowie gleichzeitiger Applikation von Mikroorganismen mit unterschiedlichem Wirkungsmechanismus wird die Bekämpfung des Welkesyndroms an Tomaten untersucht. Im einzelnen ergeben sich folgende Ziele: 1) Verbesserung der Wirksamkeit der antagonistischen Mikroorganismen Pseudomonas fluorescens T58 und Bacillus megaterium 25-6, sowie Trichoderma harzianum T-35 und T-203, 2) Optimierung von Formulierung und Applikation der Antagonisten, und 3) grundlegende Untersuchungen zur Wirkung der verbesserten Stämme auf Pflanzenentwicklung, Befallsverlauf und mikrobielle Diversität im Boden. Die Antragsteller verfügen über langjährige Erfahrungen zum Einsatz antagonistischer Mikroorganismen und der Bekämpfung des Welkesyndroms.
| Origin | Count |
|---|---|
| Bund | 340 |
| Land | 19 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Ereignis | 14 |
| Förderprogramm | 308 |
| Taxon | 1 |
| Text | 22 |
| Umweltprüfung | 4 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 34 |
| offen | 319 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 316 |
| Englisch | 73 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 1 |
| Datei | 14 |
| Dokument | 19 |
| Keine | 171 |
| Webseite | 174 |
| Topic | Count |
|---|---|
| Boden | 232 |
| Lebewesen und Lebensräume | 359 |
| Luft | 183 |
| Mensch und Umwelt | 355 |
| Wasser | 258 |
| Weitere | 330 |