API src

Found 58 results.

E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries

Das Projekt "E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Agrartechnik in den Tropen und Subtropen durchgeführt. Fruit tree cultivation is a suitable option for erosion control in mountainous regions of Southeast Asia. However, seasonal overproduction and insufficient access to markets can cause economic losses. The possibility of processing fruits locally could contribute considerably to increase and stabilize farm income. Currently, fruit drying methods in these areas are yielding products of inferior quality. Pre-treatments such as sulphurizing are commonly used, but can make the product undesirable for international markets. In addition, high energy requirements increase production costs significantly. Therefore, the objective of subproject E1.2 is to optimize the drying process of small-scale fruit processing industries in terms of dryer capacity, energy consumption and efficiency and end product quality. During SFB-phase II in E1.1, drying fundamentals for the key fruits mango, litchi and longan were established. In laboratory experiments, impacts of drying parameters on quality were investigated and numerical single-layer models for simulation of drying kinetics have been designed. In SFB-phase III this knowledge will be expanded with the aim of optimizing practical drying processes. Therefore, the single-layer models will be extended to multi-layer models for simulating bulk-drying conditions. The Finite Element Method (FEM) will be adapted to calculate heat and mass transfer processes. Thermodynamic behavior of batch and tray dryers will be simulated using Computational Fluid Dynamics (CFD) software. Drying facilities will be optimized by systematic parameter variation. For reduction of energy costs, the potential of solar energy and biomass will be investigated in particular. Further research approaches are resulting from cooperation with other subprojects. A mechanic-enzymatic peeling method will be jointly used with E2.3 for studying the drying behavior of peeled litchi and longan fruits. Furthermore, a fruit maturity sensor based on Acoustic Resonance Spectroscopy (ARS) will be developed in cooperation with E2.3 and B3.2. Finally, an internet platform will be built for exchange of farmer-processor information about harvest time and quantities to increase utilization of the processing facilities.

Ground-based remote sensing measurements of CO2 and CH4 using the moon as light source during the polar night

Das Projekt "Ground-based remote sensing measurements of CO2 and CH4 using the moon as light source during the polar night" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. Throughout the last years measurement techniques have been developed to measure total columns of atmospheric CO2 and CH4 with sufficient precision using the ground-based solar absorption remote sensing spectrometry in the near-infrared spectral region. These observations are internationally organized in the Total Column Carbon Observing Network (TCCON). These observations have been initiated for the satellite validation, because they sample the atmosphere in a similar way as satellites. However, the measurements itself have been found extremely valuable to investigate the sources and sinks of the trace gases, because the interpretation of the ground-based total column data depend to a less extent on assumptions on the vertical mixing in the atmosphere compared to surface in-situ data. We perform such observations at our site in the high Arctic on Spitsbergen (79°N). However, during the polar night from October until mid-March no observations can be performed, because the sun is below the horizon. Since the seasonal cycle of CO2 is largest in the high northern latitudes the lack of total column data for the winter period limits our understanding of the carbon budget. Within this project we plan to modify the measurement and analysis technique to measure the total columns of CO2 and CH4 in the near-infrared using the moon as light source during the polar night. This will allow us to perform observations on +-3 days around full moon, and thus, obtain data throughout the polar night for about three full moon periods. This allows measuring the complete seasonal cycle of total column measurements of CO2 and CH4 in the high Arctic, which is not known so far. Finally, the whole set of data will be compared to the existing in-situ surface data at that site and both data sets, in-situ and total column, will be compared with appropriate models.

Sea Surface Topography and Mass Transport of the Antarctic Circumpolar Current (GEOTOP)

Das Projekt "Sea Surface Topography and Mass Transport of the Antarctic Circumpolar Current (GEOTOP)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Astronomische und Physikalische Geodäsie durchgeführt. GeoTop3 is the third phase of a DFG project and belongs to the DFG priority progamme 1257 Mass Transport and Mass Distribution in the Earth System . It aims at the determination of the absolute, but temporally changing ocean circulation flow field and of associated mass and heat transports. It is based on a state-ofthe-art circulation model assimilating geodetic data of the dynamic ocean topography (DOT) and oceanographic in-situ data. The ocean model is focused on the Atlantic sector of the Antarctic Circumpolar Current (ACC) and the Weddell Sea. This is one of the most dynamic ocean areas and one of the most critical regions for global climate, due to the impact of circumpolar bottom water production on global deep sea circulation. The regional model is embedded into a coarser global model to avoid systematic distortions. The expected results of this project extension are: 1. A stationary DOT with highest achievable spatial resolution from GRACE and in particular GOCE geoid models and multi-mission altimeter data with error propagation for both, geoid and sea surface. 2. The geoid models will be combined with regional Antarctic gravity data for higher resolution. ICESat data will be used to deal with seasonal sea ice concentrations. 3. A time-variable DOT, sufficiently smoothed to reduce the signal-to-noise ratio and to match the spectral and spatial resolution characteristics of the numerical model. 4. A calculation of the sensitivity of major ocean features such as strength of the Weddell Gyre on the accuracy and resolution of the geoid (and dynamical height) determination in view of the high resolution GOCE geoid model and improved geoid estimates in Weddell Sea area. 5. Model runs, in particular for the mass and heat transport in the Antarctic Circumpolar Current and the Weddell Gyre, the mean oceanographic DOT and its variability as well as their interpretation and quality assessment.

C 1.2: Analysis and manipulation of the agro-biocoenosis for sustainable management of litchi growing systems at hillsides of Northern Thailand

Das Projekt "C 1.2: Analysis and manipulation of the agro-biocoenosis for sustainable management of litchi growing systems at hillsides of Northern Thailand" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Pflanzenproduktion und Agrarökologie in den Tropen und Subtropen durchgeführt. In the hillsides of northern Thailand, the importance of fruit trees (mainly litchi) is increasing. However, fruit production is limited by a number of biotic and abiotic factors. Frequent applications of herbicides and insecticides result in a grass-dominated herbicide flora of low diversity. Further consequences are low numbers of beneficials, soil erosion and the decline of soil fertility. The aim of the proposed project is the development of a litchi production system with reduced insecticide and herbicide input, which allows both sustainable and profitable land use. This will be achieved by (a) the development of management strategies for preventive measures in pest population control and (b) the establishment of a smother vegetation which leads to an increased diversity of the system, enhancement of beneficials, improved soil conservation and fertility, and which has an additional-use potential (e.g., forage). The experimental approach for studying the effects of management measures (handling of the attendant vegetation and insecticide application in four different treatments) on plant species diversity and the beneficial fauna will be continued from phase 1 in an extended manner. In addition, the long-term monitoring of seasonal changes in abundance of the six major litchi pests, identified in the first phase, will be continued. The migration patterns of these species will also be studied since some of them migrate between the litchi plantations and the surrounding habitats. The parasitoids and predators of these pests will be identified and their abundances recorded. Participatory activities will continue in cooperation with subproject A1.2. They include regular meetings with individual farmers and group interviews for information exchange about pest problems and farmers strategies to cope with these problems. In the first phase, four promising cover legume species with potential for soil enhancement and livestock feeding have been identified. In order to increase biodiversity in fruit orchards, the effects of different mixtures of these species will be studied. At Mae Sa Mai, experiments will show if and how such mixtures, by complementary and compensatory effects, contribute to increased productivity and quality of the understorey vegetation. In addition, changes of soil chemical, physical and biological properties will be monitored. Soil scientist expert advice as well as related data flow is ensured by close cooperation with subprojects B1.2, B2.2 and B3.1. Participatory Monitoring and Evaluation (PM&E) will be carried out jointly with A1.2. In the view of the greater role of livestock in the region of the SFB's second research site (Phang Ma Pha), a parallel replication of the legume mixture research is intended for that site in the form of a complementary NRCT project, also including the pest component of the project.

Sub project: Long- and short-term effects of climate variability and physical forcing on the diversity of aquatic organisms

Das Projekt "Sub project: Long- and short-term effects of climate variability and physical forcing on the diversity of aquatic organisms" wird vom Umweltbundesamt gefördert und von Universität Oldenburg, Institut für Chemie und Biologie des Meeres (ICBM), Arbeitsgruppe Planktologie durchgeführt. Climate variations over the Northern Hemisphere are to a substantial proportion associated with atmospheric circulations, e.g. the North Atlantic Oscillation (NAO). Recently, many studies have revealed the impact of the NAO on the dynamics of organisms in different ecosystems, especially on the timing of life history events, on the biomass of organisms, and on the biomass of different trophic levels. However, no study has developed a consistent picture on how the NAO affects biodiversity. Here we propose a unique study aiming at analysing long-term data on the diversity of aquatic communities in combination with the prediction of trends in aquatic biodiversity while disentangling long-term and short-term effects of climate variability. To achieve this goal, we will combine databases from different marine and freshwater ecosystems in North-Central Europe. These databases provide long-term time series of species abundance and community composition from lakes, streams and 2 marine sites, comprising a spatial extent from Germany to Northern Sweden. We will use these data to test: 1)Whether there are decadal or yearly trends in the diversity of aquatic communities related to climate variability. 2) Whether asynchrony of species-specific responses leads to shifting community patterns related to climate variability, including information on shifts in seasonal co-occurrence of interacting organisms (match-mismatch), and 3) Whether the short-term variability of climate has an effect on diversity in the ecological time frame of disturbances. We will use this information to predict changes in future biodiversity under changed climate scenarios. This study will result in modelling and experimental approaches to the role of climate forcing for aquatic biodiversity.

The effect of potassium and calcium on wood formation and xylem/phloem physology

Das Projekt "The effect of potassium and calcium on wood formation and xylem/phloem physology" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holztechnologie und Holzbiologie des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. Ions play a fundamental role in the physiology of cambial growth. To gain better knowledge about the role of K, Ca and P in wood formation, we intend to focus on plants grown under different K, Ca and P supply as well as on transgenic plants with modified ion transporter expression produced by P5 and/or P3. Two approaches will be applied on all differently treated plants in this project. First, structural and ultrastructural analysis of stem tissues (phloem, cambium, xylem) will be carried out throughout all seasons by image analysis and high resolution TEM. In order to correlate structural changes to biochemical variations, a second approach deals with the following analysis in all tissues: Seasonal changes of K, Ca and P will be measured by EDXA, whereas K and Ca will also be determined quantitatively by atomic absorption spectrometry. By generating antibodies against different potassium transporters we further will show their distribution in poplar stem tissues throughout all seasons by fluorescence and transmission electron microscopy. In order to correlate changes in ion content to sugar concentrations, seasonal variations of different sugars as well as starch will be determined enzymatically. To measure changes in the chemical composition of cell walls, FTIR-spectroscopy will be used to quantitatively detect a range of functional groups in the cell wall.

ABA-mediated stress response with focus on salt-stress and trunk development

Das Projekt "ABA-mediated stress response with focus on salt-stress and trunk development" wird vom Umweltbundesamt gefördert und von Technische Universität Braunschweig, Institut für Pflanzenbiologie durchgeführt. Nitrate reductase (NR) is one of the best studied enzymes in herbaceous plants. However, little is known about nitrate assimilation in woody plants. Poplar as the model plant for trees with all of the known benefits will allow us to investigate this pathway in more detail. We will investigate the complex regulation of nitrate assimilation in woody plants by making use of our already existing knowledge of organ-specific expression of NR in tobacco. We will analyze the cross-talk between roots and shoot, the allocation of nitrate and reduced N-compounds between these organs, the threshold of N-assimilation exclusively in the roots and the storage capacity of N-compounds. Our work will be focused on different levels by (i) analyzing the already existing stably transformed poplar-lines containing different gene constructs including genes of NR and of the molybdenum cofactor biosynthetic pathway, (ii) producing a new set of transformed poplar plants be establishing the RNAi technique, and (iii) analyzing the promoter of NR. In tight collaboration with other groups of the Forschergruppe, these studies will give insights for poplar in the following areas: N-assimilation and allocation, importance of the different tissues for nitrate reduction, correlation between NR and the subsequent enzymes of the N-assimilation pathway, interaction with other organisms (mycorrhiza), importance of phytohormones for nitrate-uptake, importance of temperature and oxygen shortage for root N-assimilation (seasonal effects), influence of N-assimilation by salt stress.

Seasonal regulation of ion- and metabolite transport between poplar shoot tissues

Das Projekt "Seasonal regulation of ion- and metabolite transport between poplar shoot tissues" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften mit Botanischem Garten, Lehrstuhl für Botanik I Molekulare Pflanzenphysiologie und Biophysik durchgeführt. We intend to investigate the molecular mechanisms of mineral nutrient dependent poplar physiology with special focus on potassium. This will be accomplished using two different approaches. 1. Molecular biology: We will study the regulation of ion channels and transporters by different environmental conditions, such as the effect of nutrition, salt, hormonal action, cold and drought during wood production and the dormancy-growth transitions. Phenotype analysis of transporter sense/antisense plants will be used to gain insights into the role of the transporters in tree physiology. On the basis of a laser-micro-dissection system, we will be able to prepare cDNA of distinct cell types and generate subtractive cDNAs to determine genes, specific for the differentiation of vessels and bast fibers. 2. Electrophysiological investigations: We will compare the functional properties of the transporters. Ion-fluxes and transporters, involved in cambial activation will be characterized in vivo and in vitro. The response to changes in e.g. the extracellular medium in vitro, will provide a measure for the regulation of ion transport by apoplastic factors in vivo. Based on this data sets we should be able to establish a model on the seasonal fluxes of potassium in relation to the transporter properties and dynamics in the context of tree physiology in general and xylogenesis in particular.

Observations and Modelling of the 14CO2 Variability in the Polar Atmosphere of the Southern Hemisphere

Das Projekt "Observations and Modelling of the 14CO2 Variability in the Polar Atmosphere of the Southern Hemisphere" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. The project focuses on the measurement and interpretation of atmospheric 14C variations in high latitudes of the southern hemisphere. We will investigate the global trend in the interhemispheric 14C gradient which is naturally caused by the large 14CO2 uptake in the Southern Ocean due to vigorous gas exchange and a strong 14C disequilibrium between the atmosphere and aged surface water around Antarctica. Anthropogenic emissions of fossil fuel, 14C-free CO2 in the northern hemisphere counteract the natural gradient. Seasonal variations in the CO2 gas exchange rate between atmosphere and ocean surface lead to seasonally varying 14CO2 fluxes, which contribute to the seasonality of the observed 14C signal in the southern polar troposphere. This ocean signal is superimposed by the seasonal injection of stratospheric air (= source of natural, cosmogenic 14C). Both components can, in principle, be decoupled by 10Be/7Be observations and respective model simulations. With an existing box model of the atmosphere for 14CO2 to which an ocean model will be coupled in the frame of this project, we will simulate and quantify the oceanic and stratospheric contributions to the observed 14C variability. This will allow new constraints on the respective processes, i.e. gas exchange between stratosphere, troposphere and ocean. Furthermore, the observed inter-annual 14C variability, its relation to ENSO and the associated variable stratification of the oceans in the southern hemisphere will by studied.

E 1.1: Mathematical modelling of the drying process of tropical fruits including the kinetics of quality decisive attributes

Das Projekt "E 1.1: Mathematical modelling of the drying process of tropical fruits including the kinetics of quality decisive attributes" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Lebensmittelwissenschaft und Biotechnologie, Fachgebiet Lebensmittel pflanzlicher Herkunft (150d) durchgeführt. The cultivation of fruit trees is a priority option for a sustainable agriculture in tropical mountainous regions of Southeast Asia. However, seasonal overproduction and insufficient access to fresh fruit markets causes high losses. Local processing of dried fruits could have a significant contribution to provide farmers with regular income and is an essential means to improve the micro-nutrient supply. However, local fruit drying methods including pre-treatments with sulphur and boiling in sugar solution cannot retain the typical fruit aroma, colour and micro-nutrients and prevent access to international markets. In addition, high energy consumption and the lack of knowledge of optimum drying parameters increase production costs significantly. To optimise the drying process for tropical fruits in general there is an urgent need to investigate into the impact of drying parameters and drying methods on the kinetics of quality decisive attributes. The development of drying simulation models including the reaction kinetics are therefore an important tool to produce high quality dried fruits at minimum costs and less energy consumption. To meet pre-requisites according to the shape of fruits, mangoes, lychees and unpeeled longans have been chosen for this project as model for cut slices and spheres, respectively. Within a preliminary project (DFG Mu582/3-1/2) the influence of the drying parameters on the quality of sliced mangoes was investigated at stationary conditions. The research work included the determination of drying curves and the quality evaluation of fresh and dried fruits but did not include the kinetics of the quality decisive parameters. In the following, the drying fundamentals of the fruits will be determined or completed. First, based on the drying curves, the physical properties of fruit flesh (diffusion coefficient, heat and mass transfer coefficient) and secondly density, specific heat capacity, thermal and temperature conductivity as well as equilibrium moisture content will be determined using either standard procedures or new methodologies to be developed. For quality analysis, experiments on the functional interaction between drying conditions (temperature, humidity, air velocity), of relevant index enzymes activities (peroxidase POD, polyphenoloxidase, PPO; lipoxygenase, LOX) and the quality determining criterions (flavour, aroma, texture, colour, vitamin content) will be followed by quality evaluation and optimising the drying conditions. Using adequate simulation programmes, the mathematical modelling of the drying process including the enzyme kinetics and the temporal changes of quality attributes will lead first to simulate the drying process for a single fruit and further on to simulations of stationary high-temperature drying processes as well as solar drying processes at unsteady conditions. The development and validation of the simulation model based on the results of the drying tests including an economical analysis

1 2 3 4 5 6