API src

Found 40 results.

Related terms

Oder-Fischsterben: Eingeleitetes Salz führte zur Massenvermehrung giftiger Alge

Gemeinsame Pressemitteilung von Bundesumweltministerium und Umweltbundesamt Expertenbericht geht von menschengemachter Umweltkatastrophe aus Die wahrscheinlichste Ursache für das Fischsterben in der Oder ist ein sprunghaft gestiegener Salzgehalt, der gemeinsam mit weiteren Faktoren für eine massive Vermehrung einer für Fische giftigen Brackwasseralge geführt hat. Das geht aus dem Bericht der deutschen Expertengruppe hervor, der heute veröffentlicht wurde. Die Brackwasseralge Prymnesium parvum erzeugt eine giftige Substanz, die für Fische und andere Wasserorganismen tödlich ist. Gleichzeitig mussten die Experten mangels verfügbarer Informationen offenlassen, was die Ursache für den unnatürlich hohen Salzgehalt war. Unklar ist auch, wie die Brackwasseralge, die normalerweise in Küstengewässern vorkommt, ins Binnenland geraten ist. Die Ergebnisse des polnischen Berichts wurden gestern in Warschau vorgestellt. Bundesumweltministerin Steffi Lemke: „Das Fischsterben in Oder ist eine gravierende Umweltkatastrophe. Sie wurde durch menschliche Aktivitäten verursacht, das ist ein zentrales Ergebnis der Untersuchungen: Salzeinleitungen sind nach Ansicht der Fachleute die Ursache für das Fischsterben. Der hohe Salzgehalt in der Oder und weitere Faktoren führten zu einer massiven Vermehrung einer Brackwasseralge. Das Gift dieser Alge war für die Fische tödlich. Diese verheerende Wirkungskette ist für die Fachleute am wahrscheinlichsten. Dennoch bleiben Fragen offen. Neben der Ermittlung der Ursachen steht vor allem die Regeneration der Oder im Vordergrund. Das Bundesumweltministerium wird betroffene Regionen unterstützen, z. B. um alle Umweltschäden zu analysieren und die Renaturierung voranzutreiben. Ausbaumaßnahmen an der Oder stehen einer erfolgreichen Regeneration entgegen. Daher suche ich den Austausch mit meiner polnischen Kollegin, um für dieses Verständnis zu werben und um gemeinsame nächste Schritte zu vereinbaren. Mit der Überarbeitung des Warn- und Alarmplans für die Oder wurde bereits begonnen. Klar ist auch: Das Fischsterben ist nicht nur ein Problem der Oder. Angesichts der Klimakrise ist ernsthaft zu prüfen, was wir unseren Flüssen in Zukunft noch zumuten können. Wir müssen die Einleitungen von Stoffen, z. B. aus Kläranlagen, in Flüsse überprüfen und reduzieren. Das werde ich mit den Bundesländern im November diskutieren.“ Lilian Busse, ⁠ UBA ⁠-Vizepräsidentin und Leiterin der deutschen Delegation: „Unsere Hypothese können wir erst abschließend bestätigen, wenn auch der Untersuchungsbericht aus Polen ausgewertet ist. Wichtig ist es, die ⁠ Resilienz ⁠ des Ökosystems Fluss-⁠ Aue ⁠ im ⁠ Klimawandel ⁠ weiter zu stärken. In Zeiten des Klimawandels mit langen niederschlagsfreien Perioden und hohen Temperaturen überlasten die vielfältigen Nutzungen unsere Flüsse. Die EU-⁠ Wasserrahmenrichtlinie ⁠ fordert einen guten Zustand der Gewässer und enthält ein Verschlechterungsverbot. Ein naturnäherer, guter Zustand würde die Widerstandsfähigkeit der Flüsse stärken und gleichzeitig den Schutz vor Hoch- und Niedrigwasser verbessern. Die dafür notwendigen Maßnahmen müssen nun so schnell wie möglich umgesetzt werden.“ Die schnell angestiegene Salzkonzentration in der Oder sowie die Sonneneinstrahlung begünstigten das rasante Wachstum der Algenart Prymnesium parvum. Laut Bericht der deutschen Expertinnen und Experten ist dies durch zahlreiche deutsche Wasserproben und Satellitenaufnahmen belegt. Mit mikroskopischen und molekularbiologischen Untersuchungen konnte diese Brackwasseralge und das von ihr gebildete Algengift Prymnesin eindeutig identifiziert werden. Noch unklar ist, wie die Alge, die eigentlich im salzhaltigen Brackwasser in Küstennähe vorkommt, ihren Weg in die Oder gefunden hat. Dass Gewässer teils zu hohe Salzgehalte aufweisen, ist auch aus anderen Flüssen in Deutschland bekannt. Der Salzgehalt der Werra etwa ist seit Jahrzehnten deutlich zu hoch, was an Salzeinleitungen aus dem Kalibergbau liegt. Warum aber der Salzgehalt in der Oder nun so schnell und derart stark angestiegen ist, müssen die polnischen Untersuchungsergebnisse zeigen. Die Autorinnen und Autoren des deutschen Berichts sind einer Vielzahl von Hypothesen für die Ursache des Fischsterbens nachgegangen. Infolgedessen erscheint den Fachleuten das Zusammenspiel von hohem Salzgehalt und massiver Vermehrung der giftigen Brackwasseralge in dem ohnehin durch die Klimakrise bereits gestressten Gewässer als die wahrscheinlichste Ursache. Andere Ursachen für das Fischsterben haben sich als wenig wahrscheinlich erwiesen. So untersuchte die Bundesanstalt für Gewässerkunde (BfG) das Oderwasser auf Schwermetalle und mit der so genannten Non-Target-Analytik auf mehr als 1.200 potentiell schädliche Chemikalien. Dabei wurden zwar viele Verbindungen in der Oder nachgewiesen, diese können aber zumindest einzeln nicht zu einem Massensterben führen. Ungewöhnlich hohe Konzentrationen wurden auch für einige Verbindungen nachgewiesen, die die durch Salz verursachte Algenblüte zwar begünstigt, aber das Fischsterben nicht ausgelöst haben können. Um Spätfolgen zu vermeiden, muss laut der Expertengruppe sichergestellt werden, dass sich die Alge nicht erneut in der Oder sowie anderen Flüssen vermehrt. UBA-Vizepräsidentin Lilian Busse: „Wir müssen vermeiden, dass sich die Brackwasseralge in Flüssen wie Werra oder Elbe ausbreitet. Außerdem sollten wir die Genehmigungen für das Einleiten von Chemikalien und salzhaltigen Wassers auf den Prüfstand stellen.“ Die bei den Untersuchungen an der Oder eingesetzte Non-Target-Analytik ist vielversprechend. Ihr Einsatz wird am Rhein bereits erprobt. Das Fischsterben in der Oder bietet auch Anlass, die Warn- und Alarmpläne der großen Flüsse zu überprüfen und anzupassen. Die Renaturierung der Oder als Lebensraum seltener Arten und als Quelle wichtiger ⁠ Ökosystemleistungen ⁠ für die Menschen vor Ort wird künftig eine wichtige Aufgabe sein. Das Bundesumweltministerium treibt daher aktuell den Start eines Vorhabens im Rahmen des Bundesnaturschutzfonds voran. Dieses Vorhaben soll die Schäden des Ökosystems erfassen, die natürliche Regeneration verfolgen und Grundlagen für effektive Renaturierungsmaßnahmen legen. Fischer an der Oder werden aufgrund ihrer besonderen Kenntnisse bei der Projektumsetzung eine wichtige Rolle spielen und würden dann für ihre Leistungen auch bezahlt. Betroffen von den Algengiftstoffen war auch der seltene baltische Stör. Diese Art war in Europa bereits ausgestorben und sollte im Rahmen eines seit 2006 laufenden Wiederansiedlungsvorhabens in der Oder wieder heimisch werden. Der Erfolg dieser Maßnahmen ist nun durch die Oderkatastrophe stark gefährdet. Das ⁠ BMUV ⁠ beabsichtigt kurzfristig, dieses Störprojekt in Mecklenburg-Vorpommern und Brandenburg finanziell zu unterstützen, um vor allem durch einen Nachbesatz von Jungstören die entstandenen Schäden zu mindern. Das BMUV wird bereits laufende Aktivitäten der Länder und Initiativen Dritter zur Planung und Umsetzung von Maßnahmen an der Oder im Bundesprogramm Blaues Band Deutschland (Förderprogramm Auen) weiter unterstützen und voranbringen. Anknüpfungspunkte sind u. a. die vom Landesamt für Umwelt Brandenburg (LfU) in Auftrag gegebene „Machbarkeitsstudie Blaues Band - Pilot Oder“ und erste Ideen der Umweltverbände für die Maßnahmenumsetzung. Des Weiteren wird derzeit ein „Aktionsprogramms Oder“ geprüft, das vorrangig auf die Renaturierung der Flusslandschaft Oder ausgerichtet sein soll. Bundesumweltministerin Steffi Lemke und ihre polnische Kollegin Anna Moskwa hatten Mitte August die Einrichtung einer deutsch-polnischen Expertengruppe zur Aufklärung der Ursachen der Oderkatastrophe eingesetzt. Die Expertengruppe war je zur Hälfte mit Experten aus Deutschland und Polen besetzt worden. Das Umweltbundesamt leitete die deutsche Delegation, die auch den heute veröffentlichten Bericht verfasst hat. Die Bundesanstalt für Gewässerkunde hat maßgeblich an der Erstellung des Berichts mitgewirkt. Des Weiteren waren unter anderem Vertreterinnen und Vertreter verschiedener Landesämter Teil der deutschen Delegation. Die polnische Seite hatte einen wissenschaftlichen Bericht beauftragt, der parallel veröffentlicht wurde. Mit Veröffentlichung der Berichte endet die Aktivität der deutsch-polnischen Arbeitsgruppe.

Xtra-Abbau\Kali-DE-2000

Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale. Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes Rohsalz SylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der hier bilanzierte Prozess der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozesseinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt, wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozesswärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als Schätzung anzusehen (Kali 1996). Prozessbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozessemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe hier auf Null gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, dass pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe

Xtra-Abbau\Kalisalz-DE-2000

Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale . Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes RohsalzSylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der in der vorliegenden Studie bilanzierte Prozeß der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozeßeinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung und damit als vorläufig zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt. Wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozeßwärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als vorläufig anzusehen. Aktuellere und genauere Daten sind für die zweite Jahreshälfte des Jahres 1996 zu erwarten (Kali 1996). Prozeßbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozeßemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe in dieser Studie 0 gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, daß pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe

Ermittlung von potentiellen Strahlenexpositionen durch Ableitungen aus NORM-Industrien - Vorhaben 3615S12232

Im Zusammenhang mit der Umsetzung der Grundnormenrichtlinie in nationales Recht wird mit dem Vorhaben „Ermittlung von potentiellen Strahlenexpositionen durch Ableitungen aus NORM-relevanten Industriezweigen“ auf den Teilaspekt der Ableitungen eingegangen. Dabei ist zunächst zu prüfen, ob die bisherigen Regelungen der Strahlenschutzverordnung (StrlSchV) für den Bereich NORM mit den Inhalten der Grundnormenrichtlinie konform sind oder ob es Bedarf für weitergehende Regelungen gibt. Die Einhaltung des Grenzwertes von 1 mSv/a für die Bevölkerung gilt nach Artikel 12 der Grundnormenrichtlinie für die Summe der Expositionen aus allen zugelassenen Tätigkeiten. Es ist zum gegenwärtigen Zeitpunkt nicht festgelegt, was zugelassene Tätigkeiten im Sinne der Richtlinie darstellen. Für dieses Vorhaben ist diese Festlegung auch nicht erheblich, vielmehr ist es ein wesentliches Ziel, Expositionen der Bevölkerung durch Ableitungen aus NORM-Industrien zu ermitteln. Hiervon unberührt ist, ob sich daraus künftig eine Regelungsbedürftigkeit für Ableitungen ergibt oder nicht. Außerdem ist zu prüfen, ob zusätzlich zu den in der Anlage XII der StrlSchV aufgeführten Rückständen weitere NORM-Rückstände zu beachten sind und ob neben den Strahlenexpositionen durch die Beseitigung oder Verwertung dieser Rückstände auch durch Ableitungen aus Anlagen und Einrichtungen der betreffenden Industrien Dosisbeiträge für die Bevölkerung zu erwarten sind, die wegen der o. g. Bedingungen für die Einhaltung der Dosisgrenzwerte für Tätigkeiten zu beachten sind. Entsprechend der Aufgabenstellung sind hinsichtlich ihrer Ableitungen potentiell relevante Industriezweige auf der Basis einer Literaturrecherche zu identifizieren, und zwar auf der Grundlage • von Anhang VI Richtlinie 2013/59/Euratom und • des Altlasten-Branchenkatalogs aus dem Jahr 2014. Darüber hinaus sind Bewertungen von Ableitungen des Kohlebergbaus, der Radonheilbäder und -stollen sowie des Kalibergbaus vorzunehmen. Eigene Erkenntnisse des Auftragnehmers flossen ebenfalls in die Bewertung ein.

Überprüfung des perkolationsgetriebenen Transports von Fluiden im Wirtsgestein Steinsalz unter relevanten Bedingungen für ein Endlager (PeTroS) – Vorhaben 4717E03250

Das Forschungsvorhaben PeTroS befasst sich mit den Durchlässigkeitseigenschaften von Steinsalz bei hohen Drücken und Temperaturen. Hinblick auf experimentell und konzeptionell gesicherte Dichtheits- bzw. Integritätskriterien gegenübergestellt. Steinsalz verliert seine Integrität danach unter zwei Bedingungen: Falls durch mechanische Schädigung mit Volumenzuwachs Porosität erzeugt wird (Dilatanzkriterium) oder falls der angreifende Fluiddruck größer ist als die minimale Hauptspannung, so dass Fluide sich Wegsamkeiten entlang der Korngrenzen schaffen können (druckgetriebene Perkolation, Minimalspannungskriterium). Die Kriterien werden durch Versuche in Labor und situ, Beispiele aus dem weltweiten Salz- und Kalibergbau und der Endlagerung sowie natürliche und technische Analoga unterlegt. Es existieren allerdings Druck- und Temperaturbereiche, die zwar potentiell endlagerrelevant sind und in denen gemäß der static pore-scale theory (Lewis, Holness 1996; Ghanbarzadeh et al. 2015) hohe Permeabilitäten vorliegen sollten, die aber bisher nicht experimentell untersucht worden sind. Im Rahmen des vorliegenden Forschungsvorhabens wurde die Durchlässigkeit von Proben aus natürlichem Steinsalz mit Stickstoff und Salzlösung geprüft. Die Versuche umfassten Temperaturen von 140°C bis 180°C und Drücke von 18 MPa bzw. 36 MPa. Die Ergebnisse zeigen, dass eine erhöhte Permeabilität, wie sie aufgrund eines verbundenen Porennetzwerkes zu erwarten wäre, nicht nachzuweisen ist. Hingegen wird die druckgetriebene Perkolation auch im betrachteten Bereich als wesentlicher Mechanismus bestätigt, so dass auch die experimentelle Evidenz für die deformationsgetriebene Perkolation in Frage gestellt ist.

Grundwasser: Chlorid mg/l

Chlorid kommt meist aus dem Boden und dem Untergrundgestein des Einzugsgebietes, wobei es dort oft nur in Spuren auftritt. Hohe Chloridkonzentrationen im Grundwasser stehen maßgeblich mit Stein und Kalisalzvorkommen (u.a.Halit, Carnallit, Hartsalz, Sylvinit) in Verbindung bzw. resultieren auch aus Einträgen salzhaltigen Sickerwassers in das Grundwasser, z.B. aus den Halden des stillgelegten bzw. auch noch aktiven Kalibergbaus. Der Chlorideintrag kann auch durch den Einsatz von Tausalzen hervorgerufen werden. Chlorid wird auch als Natriumchlorid (NaCl) aus dem Meerwasser ausgeblasen und gelangt über die Atmosphäre in die Niederschläge. Das Chlorid-Ion ist geochemisch äußerst mobil und unterliegt weder Umwandlungs- noch Abbauprozessen. Es kommt vor allem als Natriumchlorid (Kochsalz), Kaliumchlorid und Calciumchlorid vor und wird im Grundwasser durchlässiger Gesteine im Allgemeinen nicht zurückgehalten. Grundwasser in chloridarmen Gestein weist (nach MATTHEß, 1990) im Normalfall weniger als 30 mg/l auf, wogegen Grundwasser in Bereichen mit Kontakt zu salinarem Untergrund Chloridgehalte von mehreren tausend mg/l erreicht. Der Schwellenwert nach GrwV beträgt für Chlorid 250 mg/l. Weitere Informationen zum Thema finden Sie hier .

Bericht: "Gewässergüte: Weser, Lesum und Wümme; Teil I: Chemie (1967-1972)"

Die vorliegende Arbeit fasst die Ergebnisse aus den Jahren 1967 bis 1972 zusammen. Die Belastung der Weser erfolgt zunächst durch organische Stoffe, die durch aerobe Mikroorganismen abgebaut werden können und damit den Sauerstoffhaushalt der Weser in Anspruch nehmen. Der mittlere Sauerstoffgehalt der Weser, Wümme und Lesum war von 1967 bis 1972 im Allgemeinen gut bis ausreichend, abgesehen von Brake, wo besonders 1969 und 1971 häufig Werte unter 4 mg/l auftraten. Sie weisen hier auf eine starke organische Belastung hin. Im Sommer sinken die Sauerstoffgehalte bei Brake sogar zeitweise auf 2 mg/l ab, so dass die Weser an dieser Stelle keine weitere organische Belastung und keine Temperaturerhöhung mehr verträgt. Insgesamt gesehen ist die Weser jedoch noch in der Lage, die organische Schmutzlast bis zur Mündung abzubauen. Die Fracht der Weser an Phospaten hat ab 1967 etwas abgenommen, desgleichen die Gesamtstickstoffbelastung. Die Phosphatfracht der Weser ist 1972 allerdings wieder leicht angestiegen. Bezüglich der Ammonium-Ionen zeigte sich 1971 ein verbesserter Zustand gegenüber den Jahren 1969/1970. Im Jahre 1972 ist jedoch wieder eine Verschlechterung eingetreten. Die Werte der Sauerstoffzehrung (48 h und 120 h) weisen für Veckerhagen, Petershagen, Mittelsbüren und Brake auf eine starke Abwasserbelastung hin. Zur anorganischen Belastung der Weser tragen die Salze aus den Kalibergwerken am Oberlauf, die Salzlaugen aus den Kavernenausspülungen und die Sulfate aus der Titandioxid- und Düngemittelherstellung bei. Mit dem Industrieabwasser werden oft Spuren von Schwermetallen abgeleitet. Die Salzfracht der Weser ist im Vergleich zu anderen deutschen Flüssen sehr hoch und besonders in den letzten Jahren von 1969 bis 1972 kontinuierlich angestiegen. Messwerte von Schwermetallen für die Weser bei Bremen werden mitgeteilt. Sie geben bezüglich der Trinkwassergewinnung aus dem Weserwasser z. Zt. Zu keiner Besorgnis Anlass. Die Rest-ß-Aktivitäten erreichen nur in wenigen Fällen in der Weser nachweisbare Werte. Die Wassertemperaturen zeigen noch keine weitergehende Belastung der Weser, Wümme und Lesum an. Ein Vergleich der Weser, Lesum und Wümme mit verschiedenen deutschen Flüssen wird angestellt.

Markt für Kalisalz

technologyComment of potash salt production (RER): This datasets corresponds to the technology used in Europe for potash mining.

Bericht: "Makrozoobenthos: Unterweser; Bremerhaven bis Bremen (1980)"

Summary: In 1980 a survey of the intertidal bottom fauna was carried out in the upper reaches and the limnic tidal area of the Weser estuary between Bremerhaven and Bremen. The upper reaches are part of the natural estuarine brackish water zone. The limnic tidal area can no longer be regarded as a true fresh water habitat, because in recent years the entire course of the Weser has received a brackish character by wastes from potassium mining. From the 38 benthic animal species found, 16 species are oligochaetes, which also in quantitative respect are the most important group. A faunal break near Rodenkirchen, where the average chloride concentration is about 1 to 1,5 ‰, divides the area in a lower and an upper section. In the lower section the brackish water oligochaetes Tubifex costatus, Paranais litoralis and Peloscolex heterochaetus are the dominat species. The upper section (which includes the formerly limnic, but now briny area) is dominated by the limnic oligochaetes Limnodrilus hoffmeisteri and Tubifex tubifex, furthermore Paranais litoralis, Tubifex costatus and larvae oft the dipterous Ceratopogonidae are common and abundant. In the intertidal banks the following habitats can be distinguished: Reed beds; Mud flats; Mixed bottom; Sandy flats; Hard bottoms; Concerning the productivity of the investigation area the following conclusions may be drawn: In the upper reaches and the limnic tidal area of the Weser reed beds and mud flats are the only habitats where a considerable production of the benthic fauna takes places. The large sandy banks of the main river bed represent a habitat which is extremely poor or even uncolonized. Diskussion und Zusammenfassung: Im Jahre 1980 erfolgte eine Bestandsaufnahme der Bodenfauna in den Wattensäumen der Unterweser. Von der insgesamt 50 km langen Flußstrecke gehört ein unterer Teil (Bremerhaven – Brake) zum natürlichen Brackwasser, ein oberer, ebenfalls noch den Gezeiten unterworfener Teil (Brake – Bremen) war früher limnisch, ist gegenwärtig jedoch durch Abwässer der Kali-Industrie in ein schwaches Brackwasser verwnadlet. Von den 38 im Gebiet gefundenen Tierarten der Bodenfauna bilden die Oligochaeten mit 16 Arten die stärkste und auch in quantitativer Hinsicht bedeutendste Gruppe. Die Verbreitung der Tierarten lässt eine Häufung von Vorkommensgrenzen und Abundanzsprüngen bei Rodenkirchen, mittlerer Chloridgehalt 1 bis 1,5 ‰ erkennen. An dieser Stelle wurde die Unterweser in einen unteren und einen oberen Abschnitt gegliedert. Im unteren Abschnitt (natürliches Brackwasser mit seewärts steigender Konzentration) sind die Brackwasseroligochaeten Tubifex costatus, Paranais litoralis und Peloscolex heterochaetus die dominierenden Tierarten. Im oberen Abschnitt (teils schwach konzentriertes, natürliches Brackwasser, überwiegend ehemals limnisches, jetzt künstlich versalzenes Gebiet) herrschen die limnischen Oligochaeten Limnodrilus hoffmeisteri und Tubifex tubifex vor und Paranais litoralis, Tubifex costatus sowie Larven der Dipterenfamilie Ceratopogonidae sind weitere stetige und häufige Bodentiere. Die Ufer beider Abschnitte weisen folgende eulitorale Lebensräume auf: Riedbestände; Schlickböden; Mischböden; Sandböden; Sekundäre Hartböden; Aus produktionsbiologischer Sicht ist aus den Ergebnissen zu folgern: Riedbestände und Schlickwatten der Unterweser sind die einzigen Stätten, in denen eine nennenswerte Produktion der Bodenfauna stattfindet, da die Sandböden der Ufer des Hauptstromes schwach oder gar nicht besiedelt sind.

WIR! Gipsrecycling: Chance für den Südharz - Gewinnung von Gipsprodukten aus dem Kalibergbau

Das Projekt "WIR! Gipsrecycling: Chance für den Südharz - Gewinnung von Gipsprodukten aus dem Kalibergbau" wird vom Umweltbundesamt gefördert und von Fachhochschule Nordhausen, Fachbereich Ingenieurwissenschaften durchgeführt. Ziel des Projektes ist die Entwicklung eines industriell anwendbaren Verfahrens, mit dem die in Kalilagerstätten vorkommenden Minerale Polyhalit sowie Anhydrit zu einem Industriegips aufgearbeitet werden können. Dieser Gips in Industriequalität soll sowohl für die Herstellung üblicher Gipsprodukte (z.B. Gipskartonplatten oder Binder) als auch als Zuschlagstoff in der Zementindustrie verwendbar sein.

1 2 3 4