Das Projekt "Klimakammer (Phytotron)" wird vom Umweltbundesamt gefördert und von Hochschule für Nachhaltige Entwicklung Eberswalde (FH), Fachbereich für Wald und Umwelt durchgeführt. Die beantragte Klimakammer wird im Rahmen des vom MWFK Brandenburg seit 2009 geförderten Verbund-Forschungsvorhabens BIOBRA und zukünftiger Forschungsvorhaben eingesetzt. In BIOBRA arbeitet eine interdisziplinäre Forschergruppe von grundlagenorientierten Nachwuchswissenschaftlern/lnnen des MPI für Kolloid- und Grenzflächenforschung in Potsdam (Prof. Dr. M. Antonietti) und angewandten Wissenschaftlern/Innen der FH Eberswalde (Prof. Dr. Murach) zusammen. Durch die Verschneidung der innovativen Forschungsbereiche der hydrothermalen Karbonisierung (HTC-Forschung des Prof. Antonietti 2008 ausgezeichnet mit dem 'ERC Advanced Grant' der EU) und der Agrarholzproduktion (BMBF-Verbund-Forschungsvorhaben DENDROM des Prof. Murach 2007 in die BMBF-Hightechstrategie aufgenommen) soll der Einsatz der durch hydrothermale Karbonisierung aus Abfallstoffen gewonnenen 'Biokohle' zur Bodenverbesserung (Nährstoff- und Wasserspeicherung) degradierter Standorte und zur C-Sequestrierung am Beispiel der Agrarholzproduktion (Anbau schnellwachsender Baumarten im Kurzumtrieb) untersucht werden.Durch dieses Projekt wird die Agrarholzforschung der FH Eberswalde um einen experimentellen Ansatz erweitert, mit dem sie einen Beitrag zu den neuen, internationalen Forschungsschwerpunkten 'Biochar' / 'Black Carbon' / 'Terra Preta' leisten kann.Die Klimakammer soll Schnelltests zur Optimierung der verschiedenen Biokohlen als Bodenzusatzstoff für Pappel- und Weidenstecklingen unter standardisierten Umweltbedingungen ermöglichen.
Das Projekt "Korrosionsempfindliche Dosimetermaterialien zur Überwachung der Umweltbedingungen an Kulturgütern" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Physikalisches Institut durchgeführt. Die einzelnen Belastungsfaktoren von Kulturgütern können durch apparativ aufwendige und kostenintensive Einzelmessungen mit Hilfe der modernen Analytik genau bestimmt werden. Mit den sogenannten Glassensoren wurde am Fraunhofer-Institut für Silicatforschung (ISC) eine elegante und zerstörungsfreie Methode entwickelt, die ohne aufwendige Messungen der einzelnen Parameter die auftretenden Gesamtbelastungen über einen längeren Zeitraum hinweg registrieren kann. Die Verwendung von sensibilisierten Glasflächen als Dosimetermaterial wurde für den bisherigen Anwendungsbereich ausgeschöpft. Ziel dieses Vorhabens ist es, neue korrosionsempfindliche Materialien und Komponenten herzustellen und für den prinzipiellen Einsatz zur Überwachung der Umweltbedingungen an Kulturgütern zu prüfen. Zum einen sollen Granulate der bisherigen Glasmaterialien mit unterschiedlicher Körnung in eine NIR-transparente Trägermatrix aus SiO2-Aerogel eingebracht werden. Zum anderen bietet sich die Modifizierung der inneren Oberfläche von SiO2-Aerogelen an, die dann selbst als detektionsaktive Medien fungieren können. Ein weiterer Syntheseweg soll so gewählt werden, dass Aerogel- oder Xerogelschichten ohne überkritische Trocknung auf Glas als Trägermaterial hergestellt werden. In jedem Fall muss der korrosive Einfluss bestimmter Umweltfaktoren (Feuchte, Temperatur, Schadgase) in einem Expositionsprogramm in Klimakammern, zunächst durch Variation einzelner Parameter und schließlich durch deren Kombination systematisch charakterisiert werden. Nach Abschluss dieser Labortestphase können - bei Projektende - Expositionsprogramme in Museen verwirklicht werden.
Das Projekt "Validierung des phytotoxischen Ozonflusses in Nadeln und Blätter als Voraussetzung einer realitätsnahen, integrierten Risikobewertung für die Ökosystemleistungen von Wäldern, Weiterentwicklung der Risikobewertung naturnaher terrestrischer Ökosysteme in Deutschland" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department Ökologie, Lehrstuhl für Ökophysiologie der Pflanzen durchgeführt. Eine realitätsnahe Bewertung der Risiken für die Vegetation durch bodennahes Ozon kann nur erfolgen, indem man den Ozonfluss in die Pflanze bewertet. Dafür wurde in Arbeitsgruppen der Genfer Luftreinhaltekonvention (CLRTAP) die Methode zur Berechnung der Phytotoxischen OzonDosis (POD) entwickelt. Einige wichtige Datengrundlagen zur Anwendung des POD-Modells bei Wäldern sind noch unsicher. Das Projekt soll bestehende Wissenslücken schließen bzw. verringern. In Klimakammer-Experimenten bzw. Freiland-Messungen werden die bisher genutzten Dosis-Wirkungsfunktionen sowie ausgewählte Eingabeparameter für die Modellierung des Ozonflusses überprüft. Darüber hinaus werden Wechselwirkungen von Faktoren des globalen Wandels (Klimaveränderungen, erhöhte CO2-Konzentrationen in der Atmosphäre) mit der Ozonbelastung untersucht.
Das Projekt "Zwanzig20 - HYPOS - Invest-Vorhaben: Strategische Investition 'Klimakammer und Hohlprobenprüfstand'" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Werkstoffmechanik durchgeführt. Zur Auslagerung von Proben aus faserverstärkten Kunststoffen wird eine Klimakammer beschafft. Die Kammer ermöglicht die Probenkonditionierung und -lagerung bei einem definierten Klima. Dieses soll hinsichtlich einer definierten Temperatur im Bereich von Raumtemperatur bis 70 Grad Celsius und einer definierten relativen Feuchte im Bereich von ca. 10% bis 90% einstellbar sein, um den Bereich der üblichen Normklimate abzudecken, gleichzeitig aber auch eine Trockenauslagerung der Proben erlauben. Zur effizienten Charakterisierung des Materialverhaltens unter Wasserstoffeinfluss über einen weiten Temperaturbereich wird in Erweiterung der vorhandenen Prüftechnik ein Hohlprobenprüfstand aufgebaut. Dazu wird eine elektromechanische Prüfmaschine beschafft. Diese ermöglichen Zugversuche, Risswachstums- und Ermüdungsversuche bei geringer Frequenz. Sie sind damit für LCF-Versuche geeignet. Diese wird um einen Aufbau zur Prüfung von Hohlproben und eine entsprechende Kühleinrichtung erweitert. Der Hohlprobenprüfaufbau und die Kühleinrichtung werden in Eigenbau erstellt und als Permanentaufbau in die Prüfmaschine integriert.
Das Projekt "Teilprojekt 3: Eisbildung und Wolkenmikrophysik bei CERN-CLOUD-Kampagnen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Atmosphärische Aerosolforschung durchgeführt. Ziel des CLOUD-Experiments am CERN ist die Untersuchung der Bildung und des initialen Wachstums von Partikeln (Aerosolen) in der Atmosphäre, um ein verbessertes Verständnis des Strahlungsantriebs durch Aerosole zu erreichen. Das Teilprojekt beteiligt sich mit Messungen zur Wolkenmikrophysik an der CLOUD Kammer. Diese beinhalten Messungen des Wasserdampfpartialdrucks sowie der eisbildenden Aerosolpartikel. Der Wasserdampfpartialdruck wird mit einem vom KIT eigens für die CERN-CLOUD-Kammer entwickelten in situ TDL (Tuneable Diode Laser) Spektrometer gemessen. Neu hinzu kommt ein mobiles Gerät namens INKA (Ice Nucleating Particle Counter of the Karlsruhe Institute of Technology) zur Messung eisbildender Aerosolpartikel (INPs = Ice Nucleating Particles) bei kontrollierten Temperaturen und Eisübersättigungen. Im Rahmen des Projekts wird INKA auch mit den INP-Geräten FINCH und SPIN der Johann Wolfgang Goethe-Universität Frankfurt und des Leibniz-Instituts für Troposphärenforschung (TROPOS) in Leipzig verglichen. Derartige Vergleichsmessungen sind eine wichtige Grundlage für die Weiterentwicklung und Anwendung dieser neuen Messgeräte in der Atmosphären-, Wolken- und Klimaforschung. Die Ergebnisse tragen dazu bei, Wettervorhersagen und Klimaprognosen weiter zu verbessen.
Das Projekt "Teilprojekt 1: Massenspektrometrie und CLOUD-Koordination" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Ziel des CLOUD-Experiments am CERN ist die Untersuchung der Bildung und des initialen Wachstums von Partikeln (Aerosolen) in der Atmosphäre, um ein verbessertes Verständnis des Strahlungsantriebs durch Aerosole zu erreichen. Im Teilprojekt werden Messungen zur Nukleation und zum initialen Aerosolwachstum für verschiedene Oxidationsprodukte von organischen Komponenten wie Terpenen und Sesquiterpenen aus biogenen Quellen durchgeführt. Aktuelle Messungen zeigen Nukleationsphänomene im Zusammenspiel mit Ionen aus kosmischer Strahlung. Die Messungen lassen erwarten, dass der Klimaantrieb auf Grund von veränderten Aerosol-Wolken-Wechselwirkungen niedriger ausfällt als bisher angenommen. Diese ersten Messungen werden nun wesentlich erweitert und systematisiert. Die Temperaturabhängigkeit, der Einfluss von verschiedenen Oxidationsmitteln (OH, O3) Luftfeuchte, NOx und Ammoniak werden untersucht. Weiterhin sind Messungen mit anthropogen verursachten organischen Komponenten wie Xylen und Trimethylbenzol geplant. Ziele sind a) die Identifikation von wesentlichen an der Nukleation beteiligten hoch-oxidierten schwerflüchtigen organischen Komponenten, b) die Quantifizierung der Rolle der Ionen beim Nukleationsprozess, c) die Bestimmung der Komposition von Clustern und nano-Aerosolpartikeln und d) die Bestimmung von Nukleations- und Wachstumsraten. In Zusammenarbeit mit internationalen Projektpartnern soll die Klimawirksamkeit dieser neuen Aerosolprozesse abgeschätzt werden.
Das Projekt "Teilprojekt 2: Eisnukleation und Wolkentropfenaktivierung von SOA-Partikeln" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Ziel des CLOUD-Experiments am CERN ist die Untersuchung der Bildung und des initialen Wachstums von Partikeln (Aerosolen) in der Atmosphäre, um ein verbessertes Verständnis des Strahlungsantriebs durch Aerosole zu erreichen. Dabei wird auch die Wechselwirkung der Aerosole mit Wolken untersucht, um die Einflüsse von Aerosolpartikeln auf die Bildung von Wasser- und Eiswolken zu identifizieren. Das Teilprojekt dient der Erlangung eines besseren Verständnisses (fundamental und quantitativ) bezüglich des Eisnukleationsverhaltens und Wolkentropfenaktivierungsverhaltens von sekundären organischen Aerosol-Partikeln (SOA). Dazu wird ein Wolkenkondensationskernspektrometer an der CLOUD Kammer eingesetzt.
Das Projekt "Verbesserung des Kohlenstoffspeichervermögens und der Fruchtbarkeit von Böden bei verringerter Bildung von Treibhausgasen im Zuge der Anwendung von Designer Biochars" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum für Angewandte Biologie, Institut für Bodenkunde und Pflanzenernährung durchgeführt. Um immer mehr Menschen von schrumpfenden landwirtschaftlichen Flächen mit Nahrung und Energie zu versorgen wird die Nutzung intensiviert, was zu vermehrten Treibhausgas-Emissionen führt. Der Einsatz von Biochar hat das Potential, die Treibhausgaskosten der Biomasse-Erzeugung zu verringern. Biochars variieren stark in ihren Eigenschaften und sind bisher nicht auf ihre Anwendung in verschiedensten Böden hin optimiert. Mit 'Designchar4food' (D4F) soll die Grundlage zur Herstellung von Designer-Biochars mit definierten Eigenschaften geschaffen werden. Das D4F-Netzwerk will mittels internetbasierter Entscheidungshilfen zur Kommerzialisierung der Herstellung von Biochars beitragen. Bis Mitte 2014 wird eine gemeinsame Meta-Studie erstellt um die Eigenschaften von biochars zu identifizieren die zur Reduktion von THG-Emissionen führen. Internetzugang und Literaturdatenbasis stellt die Universität Gießen. Auf dieser Basis werden 2015 Designer Biochars produziert (USA Partner) und evaluiert. Diese werden in Gewächshaus- und Klimakammerexperimenten (Infrastruktur vorhanden) auf ihr Potenzial zur Reduktion der THG-Emissionen hin getestet. Schlagwörter: Pflanzenkohle, Biokohle, FACCE-JPI
Das Projekt "Teilprojekt 3: Pflanzenabhängige biochemische Steuergrößen" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Fachbereich Biologie, Institut für Evolution und Ökologie, Abteilung Vegetationsökologie durchgeführt. Das Ziel des Teilprojektes ist es, Wissen über die Einflüsse von Klimawandel und Landnutzungswandel auf die nachhaltige Nutzung von Savannen zu generieren, welche als Input für die Teilprojekte S1 und S4 dient. Der Fokus liegt dabei auf dem Phänomen des 'shrub encroachments', der Einwanderung von Gehölzen in Savannen, welches letztendlich zum Verlust der Produktivität führt und somit den Landnutzern schadet. Der Fokus liegt hier auf der Evaluierung der Interaktionen zwischen Gräsern (C4-Pflanzen) und Gehölzen (C3-Pflanzen), insbesondere im Hinblick auf Klimawandel und erhöhtem CO2. Letzteres wird, so die Hypothese, zu einer Verschiebung der Interaktionen zwischen Gräsern und Gehölzen führen, da die Gehölze stärker von einem erhöhten CO2-Gehalt profitieren. Dies wird neue angepasste Managementstrategien notwendig machen. Es wird eine Kombination von Feld-, Garten-, und Gewächshaus- bzw. Klimakammerversuchen durchgeführt. In Jahr 1 und 2 wird der Fokus auf Feldarbeiten liegen, ab Jahr 2 dann auf den eher labororientierten Arbeiten. Samen der wichtigsten perennierenden und annuellen Gräser sowie von holzigen Pflanzen werden gemeinsam im Feld, bzw. Garten und Gewächshaus ausgesät, und der Einfluss von Klimawandel, Beweidung und erhöhtem CO2 untersucht. Die Arbeitsplanung erfolgt in enger Abstimmung mit Teilprojekt 1, da unsere Ergebnisse als Regeln in die dort entwickelten Modelle eingehen.
Das Projekt "Untersuchungen zur Wechselwirkung zwischen Wasserversorgung und erhöhten CO2-Konzentrationen bei Wintergerste: Genotypenvergleich unter verschiedenen experimentellen Expositionssystemen" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Biodiversität durchgeführt. Ziel des vorliegenden Kooperationsprojektes ist es, zu ermitteln, ob und inwieweit die Ergebnisse aus unterschiedlichen experimentellen Ansätzen zur Anpassung von Kulturpflanzen an den Klimawandel (CO2-Konzentration, Trockenheit) vergleichbar sind bzw. ob Ergebnisse aus Modellexperimenten im Labor auf die Feldsituation übertragbar sind. Durch das Projekt sollen: a) wechselseitig vorhandene Versuchsinfrastrukturen optimal genutzt werden, b) die beiden Ansätze der jeweiligen Arbeitsgruppen dadurch stärker vernetzt werden und c) die Basis für eventuell weitergehende Kooperation bis hin zu gemeinsamen Forschungsanträgen geschaffen werden. Ein aus bisherigen CO2-Versuchen in Braunschweig ausgesuchtes Kollektiv von neun Gerstesorten wird 2014 nach Martonvasar versandt und dort im vorhandenen Phytotron im Zeitraum zwischen November 2014 und März 2015 den gleichen atmosphärischen CO2 Konzentrationen wie in den Braunschweiger Feldversuchen (400 und 700 ppm) ausgesetzt. Parallel dazu findet während der Vegetationsperiode 2014 ein weiterer Wintergersteversuch in Braunschweig mit einer CO2-Anreicherung in sog. Open Top Kammern im Feld statt. In Martonvasar werden die neun Gerstesorten gleichzeitig kurzzeitigen Trockenstressbedingungen als einem weiteren Element des zukünftigen Klimawandels ausgesetzt, da eine CO2-Anreicherung durch ihre Wirkung auf die Transpiration möglicherweise Trockenstresseffekte beeinflussen kann. An beiden Standorten werden neben Ertragserhebungen insbesondere Messungen von Wasserhaushaltsgrößen (Gaswechsel, stabile 13C-Isotopensignatur) durchgeführt. Die Arbeiten liefern grundlegende Erkenntnisse zu der Frage, ob genetische Variation bei Wintergerste in der Anpassung an Elemente des Klimawandels (erhöhte CO2-Konzentration, Trockenheit) vorhanden ist und inwieweit Trockenstress die Reaktionen der Pflanzen auf erhöhte CO2-Konzentrationen beeinflusst.
Origin | Count |
---|---|
Bund | 32 |
Type | Count |
---|---|
Förderprogramm | 32 |
License | Count |
---|---|
offen | 32 |
Language | Count |
---|---|
Deutsch | 26 |
Englisch | 10 |
Resource type | Count |
---|---|
Keine | 22 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 28 |
Lebewesen & Lebensräume | 27 |
Luft | 27 |
Mensch & Umwelt | 32 |
Wasser | 26 |
Weitere | 32 |