Sachsen-Anhalts Wissenschaftsministerium stärkt einen Zukunftsbereich der universitären Forschung im Land: Minister Prof. Dr. Armin Willingmann hat am heutigen Montag einen Förderbescheid über knapp 10,9 Millionen Euro aus EU- und Landesmitteln an die Otto-von-Guericke-Universität überreicht. Finanziert wird damit die Weiterentwicklung des Forschungszentrums Dynamische Systeme (CDS), das vor allem in den Bereichen Biomedizin und Bioprozesstechnik, Chemie sowie Energieumwandlung forscht und Nukleus des Exzellenzcluster-Antrags „SmartProSys“ der Universität Magdeburg ist, der vom Wissenschaftsministerium umfangreich unterstützt wird. Mithilfe der Förderung von EU und Land wollen die Wissenschaftlerinnen und Wissenschaftler des CDS erforschen, wie sich in Sachsen-Anhalt langfristig eine nachhaltige Kreislaufwirtschaft durch erneuerbare Kohlenstoffquellen als Alternative zu fossilem Öl und Gas etablieren lässt. Dazu werden Forschende aus sechs Fakultäten der Universität Magdeburg und vom Max-Planck-Institut für Komplexe Dynamische Systeme eng und fachübergreifend kooperieren. Sie vereinen Ingenieurwissenschaften, Systemtheorie, Mathematik, Medizin und Biologie. Willingmann erklärte: „Sachsen-Anhalt zählt mit dem mitteldeutschen Chemiedreieck zu den europaweit wichtigsten Standorten der chemischen Industrie. Mit seinen Forschungsarbeiten leistet das Forschungszentrum CDS einen wertvollen Beitrag, die klimaneutrale Transformation der Branche in den kommenden Jahren voranzutreiben, Arbeitsplätze und Wertschöpfung zu sichern. Als Land fördern wir hier einmal mehr die wichtige Vernetzung von Wissenschaft und Wirtschaft und sorgen zugleich für exzellente Forschungsbedingungen.“ Im CDS arbeiten rund 100 Wissenschaftler und Wissenschaftlerinnen, um ein grundlegendes Verständnis komplexer dynamischer Systeme zu gewinnen, zu denen auch der bisher fossile Kohlenstoffkreislauf zählt. Mit Analyse, Synthese und gezielter Beeinflussung dieses Systems wollen die Forschenden umweltschonende chemische Prozesse auf Basis nachwachsender Rohstoffe entwickeln. Das Forschungszentrum CDS bildet auch die Kernstruktur des Exzellenzcluster-Antrags der Universität Magdeburg „SmartProSys“, über den nach einer erfolgreichen ersten Antragstellung Ende Mai 2025 final entschieden wird. Ziel des geplanten Forschungsclusters ist es, fossile Rohstoffe in der chemischen Produktion durch erneuerbare Kohlenstoffquellen zu ersetzen und so durch eine nachhaltige, vollständig geschlossene Kreislaufwirtschaft zu einer klimaneutralen Gesellschaft beizutragen. Langfristig angestrebt wird eine transformierte chemische Industrie, die auf biogenen Rest- und Abfallstoffen sowie recycelten Kunststoffen basiert und deren Prozesse ausschließlich mit erneuerbaren Energien betrieben werden. "Um eine klimaneutrale und gleichzeitig wirtschaftlich erfolgreiche Chemieindustrie in den nächsten 20 Jahren zu erreichen, müssen wir deren Transformation intelligent gestalten“, so Cluster-Sprecher Prof. Dr. Kai Sundmacher. „Dazu gehören neben innovativer Verfahrenstechnik und Chemie auch die Digitalisierung. Mit Hilfe von Methoden der Mathematik und Informatik entwickelt wir Digitale Zwillinge, also mathematische Abbilder realer Prozesse, mit deren Hilfe diese Prozesse flexibel auf neue Anforderungen reagieren können. Aber auch die besten technisch-mathematischen Lösungen sind am Ende wertlos, wenn sie zu teuer sind oder von der Gesellschaft nicht akzeptiert werden. Daher wollen wir in unserem Exzellenzcluster SmartProSys auch den Einfluss der ökonomischen, sozialen und politischen Rahmen-bedingungen auf die Transformation der Chemieindustrie untersuchen" Weitere Informationen zum Forschungszentrum CDS gibt es unter https://cds.ovgu.de/. Details zum Exzellenzcluster-Antrag finden sich hier: https://www.smartprosys.ovgu.de/. Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024
Humusstatus der Böden Der Humusanteil ist eine entscheidende Größe für die Struktur und die biologischen wie ökologischen Funktionen der Böden. Eine bundesweite Auswertung der organischen Substanz der Oberböden zeigt ein differenziertes Muster nach Bodenausgangsgesteinen, Landnutzung und Klimaregionen. Humusfunktionen und -gehalte von Böden Humus sichert eine Vielzahl von biologischen und ökologischen Bodenfunktionen und trägt maßgeblich zur Ausbildung der Bodenstruktur bei. Außerdem schafft er Lebensräume für Bodenorganismen und nimmt als Speichermedium für Kohlenstoff (C) eine zentrale Funktion im Kohlenstoff-Kreislauf ein. Humus ist Speicher-und Puffermedium für Wasser, Nähr-und Schadstoffe und steuert wesentlich das Nähr-und Schadstoffrückhaltevermögen der Böden. Im Allgemeinen sind die Humusgehalte in Oberböden größer als in Unterböden und besonders empfindlich gegenüber nutzungsbedingten und/oder durch den Klimawandel ausgelösten Veränderungen. Die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) hat in dem Projekt „Gehalte an organischer Substanz in Oberböden Deutschlands“ etwa 9.000 Bodenprofildaten aus den Jahren 1985 bis 2005 ausgewertet und die typischen Humusgehalte in Oberböden ermittelt. Für die drei Hauptlandnutzungen Acker, Grünland und Wald/Forst werden in der folgenden Abbildung die Häufigkeitsverteilungen der Humusgehalte dargestellt. Höhere Humusgehalte in den Oberböden sind in der aufsteigenden Reihenfolge Acker – Forst – Grünland zu beobachten. Unter Ackernutzung liegen die Humusgehalte überwiegend bei 1-4 %, bei forstlicher Nutzung bei 2-8 % und unter Grünland bei 4-15 %. Dieses Muster zeigt sich auch in den Extremwerten: die Ackernutzung ist bei Humusgehalten kleiner als 1 % am häufigsten vertreten, bei Humusgehalten größer als 30 % findet sich hauptsächlich Grünland. ___ Düwel, O., Utermann, J. (2008): Humusversorgung der (Ober-)Böden in Deutschland – Status quo. Tagungsbeitrag zum Experten-Workshop „Ableitung von Möglichkeiten und Grenzen der C-Sequestrierung von Böden in Deutschland“ am 21. und 22. Mai 2007, Umweltbundesamt, Berlin. In: Hüttl, R., Prechtel, A, Bens, O. (Hrsg.) (2008): Zum Stand der Humusversorgung der Böden in Deutschland. Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, Band 7, S. 115 – 120, Cottbus. * Humusklassen gemäß Bodenkundlicher Kartieranleitung der Adhoc-AG Boden (2005), 5. Auflage (KA5) Humusgehalte in Deutschland Die Karte „Gehalte an organischer Substanz in Oberböden Deutschlands“ stellt die räumliche Verteilung der Humusgehalte dar. Für diese mengenmäßige Flächeninformation im bundesweiten Maßstab wurden die Humusgehalten regional nach Bodenausgangsgesteinen, Landnutzung und Klimaregionen differenziert. Höhere Humusgehalte sind an der niederschlagreichen Nordseeküste, den Mittelgebirgen und dem Alpenraum zu erkennen. Sie nehmen graduell in Richtung des niederschlagsärmeren Ostens ab. Böden als Kohlenstoffspeicher Organischer Kohlenstoff ist der Hauptbestandteil von Humus. Das Thünen-Institut hat aus den bundesweiten Bodenzustandserhebungen (BZE) im Wald und in der Landwirtschaft eine nutzungsübergreifende Karte der Kohlenstoffvorräte erstellt (siehe Karte: „Nutzungsübergreifende Kohlenstoffvorräte“). Die Vorräte geben darüber Auskunft, welche Kohlenstoffmenge pro Hektar bis zu einer Tiefe von 1 Meter (90 cm im Wald) gespeichert ist. In Nord- und Süddeutschland treten die Gebiete mit den höchsten Kohlenstoffvorräten im Boden in dunkelbraunen Farben hervor. Dies sind Moorböden und weitere organische Böden, denen eine entscheidende Bedeutung zukommt: sie speichern besonders viel Kohlenstoff. Dieser belastet – solange er im Boden ist – nicht als klimawirksames Kohlendioxid (CO 2 ) die Atmosphäre . Und das Beste daran: diese Ökosystemleistung des Bodens ist völlig kostenfrei. Darum gilt es, Böden mit sehr hohem Vorrat an organischem Kohlenstoff besonders zu schützen. Veränderungen des Humusgehalts auf Ackerböden In einem Forschungsprojekt des Umweltbundesamtes wurden erstmals bundesweite Daten der Boden-Dauerbeobachtung und des Klimas zusammengeführt. Die Auswertungen von 171 Boden-Dauerbeobachtungsflächen (BDF) wiesen an insgesamt 39 Ackerflächen signifikante Humus-Veränderungen über die Zeit nach. Die Ergebnisse aus den Auswertungen der BDF und Dauerfeldversuchen zeigten, dass signifikante Humus-Veränderungen im Zeitverlauf durch das Humus-Ausgangsniveau und den Tongehalt der Böden der Versuchsflächen gesteuert werden. Der Humus-Gehalt wird über den organischen Kohlenstoff (TOC: total organic carbon) im Boden bestimmt. Generell gibt es die höchste Zunahme der TOC-Gehalte bei niedrigen TOC-Anfangsgehalten der Flächen von unter 2 % und bei Tongehalten ab ca. 30 %. Die größten TOC-Abnahmen sind bei hohen TOC-Anfangsgehalten zwischen etwa 2 % und 3 % und bei Tongehalten unter 10 % zu verzeichnen. Der Einfluss längerfristiger Klimaänderungen auf die Humus-Entwicklung kann jedoch nicht ausgeschlossen werden und muss noch weiter untersucht werden. Den Abschlussbericht zum Forschungsvorhaben finden Sie hier . Humusspannen in Ackerböden Im Bundes-Bodenschutzgesetz (BBodSchG) wird in § 17 (Gute fachliche Praxis in der Landwirtschaft) gefordert, dass „der standorttypische Humusgehalt des Bodens, […] erhalten wird“. Konkrete Werte werden allerdings nicht genannt. Das Umweltbundesamt hat eine Methode entwickelt und veröffentlicht ( Forschungsprojekt , Gehaltsspannen von organischem Kohlenstoff in Ackerböden ), mit der basierend auf den Daten von Boden-Dauerbeobachtungsflächen (BDF) unter Ackernutzung Humusspannen abgeleitet werden können. Die Spannen sollen dem nachhaltigen Bodenschutz in Deutschland dienen und können beispielsweise von Landwirtinnen und Landwirten als orientierende Zielwerte für ihre Humusgehalte genutzt werden. Die Ableitungsmethode wird im Folgenden beschrieben. Der Humusgehalt wird durch unterschiedliche Faktoren beeinflusst. Im Forschungsprojekt konnte durch die Auswertung von Daten der Boden-Dauerbeobachtungsflächen unter Acker gezeigt werden, dass der Tongehalt, der Jahresniederschlag und die Jahresmitteltemperatur den größten Einfluss auf die Humusgehalte ausüben. Mit zunehmender Höhe der Jahresniederschläge und mit steigendem Tongehalt in den Böden steigt auch der Humusgehalt an. Humus enthält etwa 58 % organischen Kohlenstoff (C org ) und wird in Mineralböden in der Regel über den C org -Gehalt (in %) bestimmt. Die abgeleiteten Spannen beziehen sich auf den C org -Gehalt. Die Höhenlage ist eng mit dem Jahresniederschlag und der Jahresmitteltemperatur verknüpft. Daher fließt sie als Maß für den Klimaeinfluss auf die C org -Gehalte in die Ableitung der Gehaltsspannen mit folgende drei Höhenstufen ein: zwei Drittel der untersuchten BDF liegen in einer Höhe von 53 bis 453 m ü. NN, die beiden anderen Stufen haben somit die Grenzen <53 m ü. NN und >453 m ü. NN. Der Tongehalt als weiterer Einflussfaktor auf die C org -Gehalte wurde über die Bodenart in der Ableitung berücksichtigt. Im landwirtschaftlichen Bereich gilt die Einteilung der Bodenart nach Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) als geeignet. Die Kategorien sind dabei: „leicht“ für sandige Böden, „mittel“ für lehmige Böden und „schwer“ für tonige Böden. Die C org -Gehaltsspannen wurden im Ergebnis aus fachlich abgestimmten statistischen Kenngrößen abgeleitet. In der Abbildung „Organische Kohlenstoff (C org )-Gehalte klassiert nach Höhenstufen und Bodenart“ ist die Verteilung der C org -Gehalte in einem Boxplot-Diagramm dargestellt. Diese Beschreibung erklärt die Abbildung genauer: „Der schwarze Balken in der Box entspricht dem Median , das untere und obere Ende der Box stehen für das 25 bzw. 75 % Quartil. Die Differenz zwischen beiden ist der Interquartilabstand. Ausreißer sind mehr als das 1,5-fache des Interquartilabstands von den Box-Enden (25 % oder 75 % Quartil) entfernt und werden als einzelne Datenpunkte dargestellt. Die „Whiskers“ („Schnurrhaare“; dünne Linien, die von der Box ausgehen) zeigen das Minimum und Maximum der Datenverteilung ohne die Ausreißer an. Die Bereiche zwischen den orangen Balken (10 % und 90 % Quantilgrenzen) sind die Humusspannen der einzelnen Klassen ( Gehaltsspannen von organischem Kohlenstoff in Ackerböden ). Die aus der Abbildung resultierenden Unter- (10 % Quantil) und Obergrenzen (90 % Quantil) der C org -Gehaltsspannen sind in der Tabelle „Organische Kohlenstoff (C org )-Gehaltsgrenzen in Prozent“ aufgelistet. Organische Kohlenstoff (Corg)-Gehalte klassiert nach Höhenstufen und Bodenart Quelle: Umweltbundesamt Tab: Organische Kohlenstoff (Corg)-Gehaltsgrenzen in Prozent Quelle: Umweltbundesamt Tabelle als PDF Tabelle als Excel mit Daten Indikatoren zur Veränderung des Humusgehalts Allgemein beschreibt und bewertet ein Indikator den Zustand und die Entwicklung der Umwelt. Für die bundesweite Berichterstattung zum Boden existieren folgende zwei Indikatoren, die die Entwicklung des Humusgehalts bzw. der Humusvorräte darstellen: Humusgehalte in Acker- und Grünlandböden. Aufgrund der begrenzten räumlichen Repräsentativität wird der Indikator für die landwirtschaftlichen Nutzflächen im DAS - Monitoring als Fallstudie geführt. Er basiert auf Daten landwirtschaftlich genutzten Dauer-Beobachtungsflächen in Bayern (siehe Abb. BO-R-1: Humusgehalte von Acker- und Grünlandböden – Fallstudie). Humusvorrat in Waldböden. Der Indikator basiert auf dem absoluten Humusvorrat im mineralischen Oberboden von Wald- bzw. Forstböden und greift auf die Ergebnisse prozessbasierter Modellierungen zurück, die wiederum auf den bundesweit verfügbaren Daten der BZE (Wald) für die Treibhausgasberichterstattung des Bundes gründen (siehe Abb. FW-R-3: Humusvorrat in Waldböden). Beide Indikatoren wurden für das DAS-Monitoring entwickelt und sind im Monitoringbericht 2023 veröffentlicht. Der Indikator „Übereinstimmung mit standorttypischen Humusgehalten“ wird für die zukünftige Anwendung auf nationaler Ebene im Ergebnis des UBA -Projekts „Ausbau und Weiterentwicklung bodenbezogener Indikatoren für die nationale und EU-weite Berichterstattung zur Klimaanpassung und zum Klimaschutz“ vorgeschlagen. Der Forschungsbericht wird Ende 2024 als UBA-Text veröffentlicht. Eine Bewertung erfolgt anhand der Entwicklung des Anteils von Messstellen unter-, inner- und oberhalb von Referenzspannweiten, die den Ist-Zustand der Humusgehalte von Böden unter Berücksichtigung unterschiedlicher natürlicher und bewirtschaftungsbedingter Standortfaktoren berücksichtigen. Auch der vom Thünen-Institut vorgeschlagene Indikator „kontextspezifische C org -Trend“ eignet sich grundsätzlich, um Fragestellungen über die Deutsche Anpassungsstrategie an den Klimawandel hinaus zu adressieren. Der Indikator basiert auf der zeitlichen Veränderung von Humus (Trend) und teilt diese Entwicklung anhand eines Referenzsystems in die Klassen „gut“ und „degradierend“ ein. Für das Referenzsystem, das wie beim oben beschriebenen Indikator die natürliche Variabilität von Humus berücksichtigt, wurden hypothetischen Erwartungsbereiche abgeleitet. Böden, deren Humusgehalte weit unter dem Erwartungswert liegen, sollen Humus aufbauen. In den Böden, die im zu erwartenden oder hohen Humusbereich liegen, soll dieser erhalten oder gesteigert werden. Beide Indikatorvorschläge wurden auf der UBA-Fachtagung „Bodenindikatoren im Kontext zur Klimaanpassung und zum Bodenschutz“ vorgestellt. Zum Weiterlesen KomPass : Humusgehalte von Acker- und Grünlandböden KomPass: Humusvorrat in Waldböden Projekt: Klimaänderung kann Humusgehalt der Böden beeinflussen Thema: Bodenfunktionen BGR-Bericht: Gehalte an organischer Substanz in Oberböden Tipp: Wie Sie mit zwei Teebeuteln zum Boden- und Klimaforscher werden Publikation: Bodenzustand in Deutschland Publikation: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes Publikation: Screening-Methoden zum kostengünstigen Nachweis einer Versorgung mit organischer Substanz auf Ackerböden und Grünland
Emissionen der Landnutzung, -änderung und Forstwirtschaft Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels Photosynthese gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere boreale Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), Aerosole oder Vorläufersubstanzen von Treibhausgasen aus der Atmosphäre entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, Landnutzungsänderung und Forstwirtschaft“ (kurz LULUCF ) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der Landnutzung entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische Biomasse, Totholz, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor LULUCF zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools Biomasse (69,6%), mineralische Böden (21,8 %) und Totholz (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, Dürre und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im LULUCF -Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und NMVOC ) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen Biomasse sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach Landnutzungsänderung sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die anthropogen bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes Treibhausgas in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. " Treibhausgas -Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: Emission aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den LULUCF -Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t CO2 -Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das BMUV hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft ( BMEL ) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die Treibhausgas -Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).
Naturnahe Moore erfüllen aufgrund ihrer speziellen hydrologischen Bedingungen eine große Anzahl von wichtigen ökologischen Funktionen und stellen somit bemerkenswerte Ökosystemleistungen zur Verfügung. Gerade im dicht besiedelten urbanen Raum stehen diese schützenswerten Böden im Spannungsfeld verschiedenster Nutzungsinteressen und sind vom Verlust ihrer Ökosystemleistungen bedroht. Im Zuge des Klimawandels wird sich diese Situation weiter verschärfen. Die naturnahen Berliner Moorböden nehmen zwar nur 1 % bis 2 % der Berliner Landesfläche ein, ihre Ökosystemleistungen sind im Vergleich zu den Mineralböden in der urbanen Stadtlandschaft jedoch beachtlich. Im Sinne des Bundes-Bodenschutzgesetzes erfüllen naturnahe Moorböden die natürlichen Bodenfunktionen in besonders nachhaltiger Weise. Dazu zählen insbesondere ihre Funktion als Lebensraum für Menschen, Tiere, Pflanzen und Bodenorganismen sowie ihre Fähigkeit zur Aufnahme und Speicherung von Wasser und (Nähr-) Stoffen. Damit bilden die Berliner Moore Stoffsenken für Kohlenstoff, Phosphor und Stickstoff, puffern eingetragene Schadstoffe ab und schützen so gleichzeitig das Grundwasser. Dank ihrer Fähigkeit, Wasser zu speichern und zurückzuhalten, wirken Moore ausgleichend bei Hochwasser. Außerdem wirken sie durch ihre Verdunstungsleistung in sommerlichen Hitze- und Trockenperioden mikroklimatisch kühlend. Naturnahe, torfbildende Pflanzengesellschaften oder auch anthropogene Einflüsse bestimmen dabei neben dem Wasserstand die natürliche Regeneration der Moorböden. Moore sind einmalige Archive der Natur- und Kulturgeschichte, da sie Pollen, Pflanzen und Tiere sowie Siedlungsspuren und Kulturrelikte aus früherer Zeit dauerhaft konservieren. Die meisten der Berliner Moore wurden wegen ihrer Bedeutung als Biotop, als Lebensraum gefährdeter Arten und der Funktion für den Naturhaushalt sowie als Zeugnisse der Landschaftsgeschichte als Schutzgebiete (Naturschutzgebiete und Landschaftsschutzgebiete) gesichert. Die Moore im Spandauer Forst, Grunewald und Köpenick sowie das Tegeler Fließ und die Berliner Müggelspree erfüllen die Kriterien der Flora-Fauna-Habitat Richtlinie der EU und sind Teil des europäischen Schutzgebietssystems Natura2000 . Am 13. März 2012 hat der Senat von Berlin die Berliner Strategie zur Biologischen Vielfalt beschlossen. Es geht sowohl um das Bewahren wertvoller Reste ursprünglicher und kulturlandschaftlicher Natur in Berlin als auch um größere, dynamische Spielräume für die Naturentwicklung innerhalb aller Flächennutzungen. Berliner Lebensräume bestehen aus Relikten der ursprünglichen Naturlandschaft wie Mooren und naturnahen Fließgewässerabschnitten und der historischen Kulturlandschaft wie Wiesen und Magerrasen. Die Vielfalt an Lebensräumen bedingt einen großen Reichtum an Pflanzen- und Tierarten, von denen jedoch viele gefährdet sind, da ihre Lebensräume oft in einem schlechten Zustand sind. Bemühungen um den Erhalt der Lebensraum- und Artenvielfalt sind daher unerlässlich. Berlin strebt an, insbesondere in Zeiten des Klimawandels wesentliche Bereiche seiner Moore als Feuchtgebiete und damit als Lebensraum moor- und feuchtgebietstypischer Arten zu erhalten. Moore stellen aufgrund ihres hohen Anteils an organischer Bodensubstanz bedeutende Kohlenstoffspeicher im globalen Kohlenstoffkreislauf dar. Daher spielen sie eine wichtige Rolle in der Diskussion im Zusammenhang mit dem Klimawandel. Obwohl diese Ökosysteme weltweit nur drei Prozent der Landfläche bedecken (Parish et al. 2008), ist in ihren Böden etwa 1/3 des gesamten organischen Bodenkohlenstoffs (C) gespeichert (Post et al. 1982). Die weltweite C-Speichermenge aller Moore wird mit über 500 Milliarden Tonnen angegeben und entspricht mehr als der Hälfte der Menge an Kohlenstoff, welche sich derzeit in der Atmosphäre in Form von Kohlenstoffdioxid (CO 2 ) befindet (Houghton 2007, Limpens et al. 2008). Die Phase der Moorbildungen und damit der C-Speicherung begann in Berlin, wie im übrigen Mitteleuropa, hauptsächlich zum Ende der letzten Eiszeit (Succow & Joosten 2001). Durch ganzjährig hohe Wasserstände mit einhergehender Sauerstoffarmut ist die Tätigkeit der Bodenlebewesen in Mooren stark eingeschränkt, so dass abgestorbene Pflanzenteile nicht vollständig zersetzt werden und sich daher in teilweise mehrere Meter mächtigen Schichten – in Form von Torfen – ablagern (Koppisch 2001a). Diese Torfe beinhalten im Vergleich zu Mineralböden allgemein sehr hohe C-Speichermengen, die weit über 1.000 t je Hektar Moorfläche liegen können (Möller et al. 2014). Durch diese hohen gespeicherten und fixierten C-Mengen leisten Moorböden einen bedeutenden Beitrag zum Klimaschutz, da sie wesentlich zur Kühlung des globalen Klimas beigetragen haben (Frolking et al. 2001, Akumu & McLaughlin 2013). Die ‚globale Kühlungsleistung‘ der Moore beträgt durch den Entzug und die Fixierung des in der Atmosphäre enthaltenen CO 2 -Kohlenstoffs innerhalb der letzten 10.000 Jahre etwa 1,5 bis 2 °C (Holden 2005). Wachsende Moore mit hohen Wasserständen fungieren auch heute noch als C-Senken. Durch Entwässerung und sinkende Moorwasserstände, etwa im Zuge von land- und forstwirtschaftlicher Nutzung, durch Grundwasserentnahme für die Trinkwasserversorgung oder durch klimatisch bedingte Niederschlagsrückgänge werden Moorböden verstärkt belüftet. Dies führt zu einer intensiveren Abbautätigkeit der Bodenlebewesen und damit zu einer Zersetzung und Mineralisation der Torfe. So verlieren Moore ihre Senkenfunktion und wandeln sich zu C-Quellen, indem z. B. verstärkt CO 2 freigesetzt wird (Koppisch 2001b). Drösler et al. (2013) beziffern beispielsweise die derzeitigen Treibhausgasemissionen aus entwässerten Moorböden nutzungsabhängig mit 0–34 t CO 2 -Äquivalente je Hektar und Jahr, was einem Anteil von bis zu 5 % an den nationalen Gesamtemissionen entspricht. Die Klimaschutzleistung der Berliner Moorböden wird u.a. durch die gesamte gespeicherte C-Menge (‚historische‘ Speicherleistung) erfasst. Zwischen einzelnen Moorflächen können extreme Unterschiede in der C-Speicherung bestehen. Bedingt durch die natürliche Standortvielfalt (Hydrologie, Geomorphologie, etc.) während der Moorbildung entstanden unterschiedlich mächtige Bodenhorizonte mit unterschiedlichen Anteilen an gespeichertem organischem Kohlenstoff. So lassen sich Moortypen nach ihren Bildungsbedingungen z. B. in Durchströmungsmoore einteilen, die bis zu zehnmal mehr Kohlenstoff als flachgründige Moore vom Typ ‚Versumpfungsmoor‘ enthalten können (Zauft et al. 2010). Neben den verschiedenen Moormächtigkeiten existieren große Unterschiede in den verschiedenen Torfqualitäten (torfbildende Pflanze, Zersetzungsgrad etc.). Diese spiegeln sich auch in den jeweiligen substrattypischen C-Gehalten und Trockenrohdichten einzelner Bodenhorizonte und damit ebenfalls in den gespeicherten C-Mengen wider (Rosskopf & Zeitz 2009). Im Rahmen des Projektes „Berliner Moorböden im Klimawandel“ (Umweltentlastungsprogramm II Berlin) der Humboldt-Universität zu Berlin, Fachgebiet Bodenkunde und Standortlehre (nachfolgend kurz Forschungsprojekt), wurden die Berliner Moore in den vergangenen Jahren erstmals flächendeckend nach einem einheitlichen Verfahren kartiert. Anschließend wurde ein Indikatoren- und Bewertungssystem für verschiedene Ökosystemleistungen von Moorböden für urbane Räume am Beispiel Berlins entwickelt. Die Besonderheit ist dabei die Anwendung von moorbodenkundlichen Daten, die eine Informationsquelle für Zustand, Funktionsfähigkeit und Biotopqualität sind und somit einen hohen Indikatorwert besitzen. Die bodenkundliche Moorkartierung bildet nunmehr die Grundlage einer systematischen Bewertung des ökologischen Zustandes der Berliner Moorböden und identifiziert ihre Umweltentlasungspotenziale und Entwicklungsziele, insbesondere im Hinblick auf ihre Klimaschutzleistungen.
On 15.12.2021, the European Commission announces to create a legal framework in a communication on "Sustainable carbon cycles" according to which procedures for natural carbon sequestration and technical CO2 extraction and storage can be certified. By the end of 2022, the European Commission wants to make a legislative proposal. In this short position, the German Environment Agency points to gaps in the European Commission's proposal, refers to essential minimum requirements for the certification of carbon sequestrations and calls for a clearer integration of the certification framework with regard to its steering effect and its steering objective in the climate protection target architecture of the European Union. Quelle: www.umweltbundesamt.de
Der Schutz des Bodens ist im Bundes-Bodenschutzgesetz gesetzlich verankert. Im Sinne dieses Gesetzes sind Funktionen des Bodens zu schützen und wiederherzustellen, schädliche Bodenveränderungen abzuwehren und Vorsorge gegen nachteilige Bodeneinwirkungen zu treffen. Im übertragenen Sinn gilt dies auch für die Auswirkungen des Klimawandels auf den Boden und damit auf seine Funktionen im Naturhaushalt. Die Handlungsebenen im Klimaschutzplan 2050 und in der Deutschen Anpassungsstrategie an den Klimawandel erfordern bundesweite, qualitätsgesicherte und hochaufgelöste Bodeninformationen für Aussagen über die Betroffenheit der Böden und ihre Rolle im globalen Kohlenstoffkreislauf. Vor diesem Hintergrund streben das Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit und das Umweltbundesamt die Einrichtung eines Klimafolgen-Bodenmonitoring-Verbunds in Deutschland an. Durch eine Vernetzung und verstärkte Zusammenarbeit können die Aussagen zum Bodenzustand und zu seinen Veränderungen auf Bundesebene wesentlich verbessert und auf eine solide Datenbasis gestellt werden. In diesem und in einem Vorgängerprojekt wurden die Grundlagen für die Umsetzung dieses Verbunds erarbeitet. Der Verbund versteht sich dabei als ein Netzwerk der Daten erhebenden Stellen. Er baut auf den in Deutschland eingerichteten, langfristig untersuchten Messstandorten auf, deren Weiterbetrieb nach aktuellem Stand gesichert ist. Zugleich ist er für die Aufnahme neu eingerichteter Standorte offen. Messdaten sollen dabei in der Hand der Daten erhebenden Stellen bleiben. Im Fokus stehen die Themen Bodenbiologie, organische Substanz, Bodenwasserhaushalt und Bodenerosion. Die Betreiber aller bundesweit betriebenen, bodenbezogenen Messprogramme und -aktivitäten haben Interesse bekundet, ihre Standorte und deren Messergebnisse für Zwecke der Klimafolgenbetrachtung zur Verfügung zu stellen und sich in einem Verbund zusammenzuschließen. Rund 9.000 Messstandorte aus 16 Programmen wurden bisher für die Teilnahme am Messnetzverbund gemeldet. Im Rahmen der Projektbearbeitung erfolgte erstmals eine übergreifende Prüfung und Bewertung dieser Mess- und Erhebungsaktivitäten auf ihre Eignung für die Zwecke des Klimafolgen-Bodenmonitorings. Grundlage der Bewertung bildeten Angaben der Daten erhebenden Stellen zu den standortbezogenen Messmethoden und -konzepten. Das Startkonzept für die Vorbereitungs- und die erste Betriebsphase umfasst zum einen fachliche Anforderungen an die Verbundstandorte für die vier oben genannten Themen in Form von definierten Qualitätskriterien (Mindestparametersätzen), Ziel- und Begleitgrößen sowie methodische Ansätze für Datenauswertungen. Darüber hinaus liegen Empfehlungen für die zur Umset-zung erforderlichen Organisationsstrukturen und Werkzeuge vor. Weiterhin werden Anpassungs- und Ergänzungsmaßnahmen vorgeschlagen, um Defizite hinsichtlich des Messumfangs und der Vergleichbarkeit der Mess- und Erhebungsaktivitäten zu reduzieren. Quelle: Forschungsbericht
Studie zu naturbasierten Lösungen im globalen Klimaschutz In einer Studie für das Umweltbundesamt hat ein Forschungsteam von Öko-Institut und Ecologic Institut die Rolle von naturbasierten Lösungen (NbS) für den globalen Klimaschutz untersucht. Das Ergebnis zeigt, dass das Klimaschutzpotenzial von NbS in der Literatur wahrscheinlich überschätzt wird. Nichtsdestotrotz bieten NbS diverse Vorteile für Mensch und Umwelt und sollten aktiv gefördert werden. Naturbasierte Lösungen schaffen Synergien zwischen Schutz der Biodiversität und gesellschaftlichen Herausforderungen Die internationalen Klimaverhandlungen auf der COP26 haben die Bedeutung von naturbasierten Lösungen (NbS) für den globalen Klimaschutz hervorgehoben. Naturbasierte Lösungen sind lokal angemessene, anpassungsfähige Maßnahmen, um Ökosysteme zu schützen, nachhaltig zu bewirtschaften oder wiederherzustellen. Beispiele sind die Agroforstwirtschaft, die Wiedervernässung von Mooren oder die Bewaldung, aber nur, sofern das im lokalen ökologischen, sozialen und politischen Kontext angemessen ist. NbS schützen oder fördern die biologische Vielfalt und leisten gleichzeitig einen Beitrag zur Lösung gesellschaftlicher Herausforderungen wie dem Klimawandel . In diesem Papier wird eine Arbeitsdefinition von NbS entwickelt, die auf der Definition der IUCN (2016) als Grundlage basiert. Klimaschutzpotenzial von naturbasierten Lösungen ist unsicher Das Forschungsprojekt bewertet das globale Minderungspotenzial von NbS in einschlägigen Studien für Wälder, Ackerland, Grünland, terrestrische und küstennahe Feuchtgebiete sowie Siedlungen kritisch. Die Studie „Nature-based solutions and global climate protection“ kommt zu dem Schluss, dass die in der wissenschaftlichen Literatur angegebenen Potenziale das realistische Potenzial von NbS für den Klimaschutz wahrscheinlich überbewerten. Dies ist auf das Fehlen integrierter Studien, zu optimistische Annahmen zur Flächenverfügbarkeit und die Qualität der verfügbaren Informationen zurückzuführen. Eine Reihe von Risiken und Unsicherheiten im Zusammenhang mit Kohlenstoffflüssen und Wechselwirkungen mit dem Klimasystem , die nicht berücksichtigt werden, schränken das Minderungspotenzial weiter ein. Der Erfolg von NbS bei der Abschwächung des Klimawandels und der Erzielung ökologischer und sozialer Vorteile wird in hohem Maße davon abhängen, inwieweit es gelingt, die durch die derzeitigen Produktions- und Verbrauchsmuster verursachten direkten und indirekten Belastungen der Ökosysteme zu beseitigen. Naturbasierte Lösungen bringen Vorteile für Mensch und Umwelt Die Unsicherheiten im Zusammenhang mit der Quantifizierung der Minderungseffekte von NbS dürfen nicht als Argument gegen ihre Umsetzung verwendet werden. Neben ihrer Minderungswirkung liefern NbS eine Reihe von Vorteilen für Mensch und Umwelt und sollten aktiv gestärkt werden. Bei der Umsetzung von Aktivitäten zum Handel mit Emissionszertifikaten unter Artikel 6 des Pariser Abkommens müssen dabei die spezifischen Risiken im Zusammenhang mit NbS berücksichtigt werden. Bei der Entwicklung von Verfahren oder Unterstützungsregelungen zur Förderung von NbS müssen soziale und ökologische Schutzmaßnahmen eingeführt werden. Zur Förderung von Synergien sollte Kohärenz mit den Arbeiten im Rahmen anderer internationaler politischer Rahmenwerke wie den anderen Rio-Konventionen hergestellt werden.
Neuer 10-Jahresplan zum Schutz der Ostsee verabschiedet Ostseeanrainer und Europäische Union haben am 20.10.2021 auf der Ministerkonferenz der Helsinki-Kommission unter deutschem Vorsitz einen Aktionsplan zum Schutz der Ostsee verabschiedet. 30 Prozent der Ostsee sollen unter Schutz gestellt und Belastungen durch Müll, Nähr- und Schadstoffe, Munitionsaltlasten und Lärm reduziert werden. Der Ostseeaktionsplan 2021 – 2030 schreibt den von der Helsinki-Kommission (HELCOM) 2007 angenommenen strategischen Rahmen für eine gesunde Ostsee für diese Dekade fort. Er legt Ziele und etwa 200 Maßnahmen vor allem zu den Segmenten Biodiversität , Überdüngung, Schadstoffen und seebasierte Aktivitäten wie z.B. Schifffahrt und Fischerei fest. Ziel ist es, umfassend und ambitioniert die Belastungen und Beeinträchtigungen der Ostsee durch den Menschen weiter zu reduzieren und die Meeresökosysteme wirksam zu schützen. „Nur so kann die Ostsee auch gegenüber den Auswirkungen des Klimawandels widerstandsfähiger und ihre natürliche Funktion im Kohlenstoffkreislauf gestärkt werden. Der Ostseeaktionsplan liefert eine wichtige Grundlage für Klimaschutz und -anpassung Hand-in-Hand mit dem Meeresschutz. Es liegt nun bei den Vertragsparteien, die Maßnahmen dringend und wirksam umzusetzen, um dem Verlust von Lebensräumen und Arten entgegenzuwirken“, sagt Dr. Lilian Busse, designierte Vize-Präsidentin des UBA und derzeit HELCOM-Vorsitzende. Die Überdüngung der Ostsee ist weiterhin die größte Belastung für das Meeresökosystem. Der Ostseeaktionsplan schreibt die Nährstoffreduktionsziele für die Ostseebecken und die nationalen Eintragsobergrenzen fort, wonach jeder Vertragsstaat einen in Tonnagen berechneten Beitrag zur Reduzierung der Nährstoffverschmutzung der Ostsee leisten muss Dr. Lilian Busse: „Die Landwirtschaft ist eine der größten, wenn nicht die größte Quelle diffuser Einträge von Nährstoffen über die Flüsse und die Luft in die Ostsee. Sie ist damit die zentrale Stellschraube, um Algenblüten und Sauerstoffmangel infolge von Überdüngung und damit verbundene verheerende Wirkungen auf Pflanzen und Tiere zu minimieren. Der Ostseeaktionsplan und die neue HELCOM Nährstoffrecycling-Strategie setzen hierfür mit zahlreichen Maßnahmen einen deutlichen Schwerpunkt sowie wichtige und innovative Impulse.“ Der Ostseeaktionsplan sieht erstmals konzertierte Aktionen vor, um gegen die Munitionsaltlasten aus zwei Weltkriegen vorzugehen. Neu ist auch der Aktionsplan zu Unterwasserlärm . Ziel ist es, auf der Grundlage wissenschaftlicher Erkenntnisse, Schalleinträge – zum Beispiel durch Rammarbeiten für Offshore-Anlagen, Sonare, Munitionssprengung, Schifffahrt und Freizeitsport – durch beste Umweltpraxis und beste verfügbare Techniken zu minimieren. Der Aktionsplan zu Meeresmüll wurde umfassend überarbeitet und gestärkt, um Meeresmüll an den Ostseestränden bis 2025 um 30% zu reduzieren und bis 2030 zu halbieren. Der Ostseeaktionsplan rückt schließlich Maßnahmen, die Beeinträchtigung des Meeresbodens zu minimieren, und den dringenden Bedarf, Lebensräume mariner Arten zu erhalten und wiederherzustellen, stärker in den Fokus. Ein Drittel der geplanten Schutzfläche soll streng geschützt werden, einschließlich nutzungsfreier Zonen. Die neu im Aktionsplan aufgenommenen übergreifenden Themen, wie marine Raumordnung oder wirtschaftliche und gesellschaftliche Analysen , stärken die Instrumente und das Ziel von HELCOM, den Schutz der Meeresökosysteme und ihre nachhaltige Nutzung, auch zum Zweck des Klimaschutzes, miteinander in Ausgleich zu bringen. Der neue Ostseeaktionsplan formuliert erstmals Maßnahmen, um die Wirkungen des Klimawandels auf die marinen Ökosysteme zu erforschen sowie in alle Arbeitsbereiche und Entscheidungen von HELCOM zu integrieren. Welche spezifischen Beiträge HELCOM zu Klimaschutz und -anpassung leisten kann, ist Gegenstand der nächsten geplanten HELCOM Stakeholder Conference im Frühjahr 2022, die vom Umweltbundesamt und dem Bundesamt für Naturschutz im Rahmen des deutschen HELCOM-Vorsitzes unterstützt wird. Die beiden Bundesbehörden laden für den November 2021 zu einem HELCOM-Fachworkshop ein, der den möglichen Beitrag des Schutzes und der Wiederherstellung von Küsten- und Meeresökosystemen wie Seegras- und Salzwiesen sowie küstennahen Mooren als CO2 -Senken betrachtet. Das UBA arbeitet seit Jahrzehnten in den HELCOM-Gremien mit Expertinnen und Experten der Ostseeanrainerstaaten zu Nutzungen und Belastungen beim Ostseeschutz zusammen. Neben der Überwachung und Bewertung von Belastungen und des Zustands der Meeresumwelt, beteiligt sich das UBA an der Erarbeitung regionaler Maßnahmen und ökologischer Leitplanken, um die negativen Auswirkungen menschlicher Aktivitäten auf die Ostsee zu reduzieren. Das UBA hat über die HELCOM-Gremien an der Erstellung des Ostseeaktionsplans 2021–2030 aktiv und steuernd mitgearbeitet. Deutschland hat seit Juli 2020 turnusmäßig bis Juni 2022 den HELCOM-Vorsitz . Deutschland tritt den Vorsitz als Bund-Länder-Team an. Das UBA stellt mit Dr. Lilian Busse die HELCOM-Vorsitzende. Dr. Johannes Oelerich hatte für Schleswig-Holstein den Vize-Vorsitz bis Juni 2021 inne. Dr. Andreas Röpke hat für Mecklenburg-Vorpommern den stellvertretenden Vorsitz bis Juni 2022 übernommen.
Origin | Count |
---|---|
Bund | 664 |
Land | 9 |
Wissenschaft | 1 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 650 |
Text | 12 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 18 |
offen | 655 |
Language | Count |
---|---|
Deutsch | 491 |
Englisch | 294 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 3 |
Dokument | 8 |
Keine | 414 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 256 |
Topic | Count |
---|---|
Boden | 616 |
Lebewesen & Lebensräume | 629 |
Luft | 553 |
Mensch & Umwelt | 673 |
Wasser | 575 |
Weitere | 673 |