API src

Found 705 results.

SP 1.5 Molekulare Charakterisierung von gelösten organischen Stoffen in der Meeresoberflächen-Mikroschicht (SML) und deren Einfluss auf den anorganischen Kohlenstoffkreislauf

Unsere Motivation ist es, die Rolle von gelöstem organischem Material (DOM) in marinen Oberflächenfilmen (SML) als eine Schlüsselkomponente zu verstehen, die den Gasaustausch zwischen Atmosphäre und Meer, die Karbonatchemie, sowie die Ökophysiologie der assoziierten Organismen beeinflusst (Engel et al., 2017). Während unserer Vorarbeiten haben wir Hinweise auf einen bisher unbekannten Zusammenhang zwischen DOM und Karbonatchemie in der SML gefunden, sowie auf eine hohe räumlich-zeitliche Dynamik in der DOM-Zusammensetzung. Obwohl die hohe Heterogenität des SML-DOM-Geometabolom (d.h. die Gesamtheit des DOM-Pools, der durch biotische und abiotische Prozesse produziert und modifiziert wird) bekannt ist, gibt es wenige detaillierte Studien darüber. Insgesamt gibt es noch kein mechanistisches Verständnis darüber, unter welchen Bedingungen DOM in der SML in verschiedene chemische Fraktionen aufgeteilt wird. Dies liegt an der derzeit geringen Verfügbarkeit von Daten von einer größeren Anzahl von Untersuchungsstandorten unter unterschiedlichen Umwelt- und Versuchsbedingungen, sowie an einen Mangel an interdisziplinären Studien, die Physik, Geochemie und Biologie kombinieren. Mit anderen Worten, uns fehlen grundlegende (organo-)geochemische Informationen von der größten Luft-Wasser-Grenzfläche der Erde, mit unbekannten Konsequenzen für den damit verbundenen Austausch von klimarelevanten Gasen. In diesem Projekt streben wir an, diese Lücke durch sich ergänzende Messungen der DOM-Zusammensetzung und anorganischer Kohlenstoff-Systemparameter zu schließen. Die Relevanz für die Forschungseinheit BASS ergibt sich aus dem Ziel unseres Teilprojekts, die fehlenden grundlegenden biogeochemischen Informationen des SML-DOM-Inventars zur Verfügung zu stellen und sie in den Kontext der Ökosystemprozesse in der SML zu setzen, einschließlich der DOM-Produktion (SP1.1) sowie des mikrobiellen (SP1.2) und photochemischen (SP1.4) Umsatzes. Darüber hinaus werden wir den Beitrag des DOM-Geometaboloms zum Säure-Basen-Gleichgewicht der SML untersuchen, von dem wir erwarten, dass es die Gasgleichgewichte in der Grenzfläche - insbesondere im Kohlensäuresystem und damit auch die Treibhausgasflüsse - beeinflusst (SP2.1).

Forest management in the Earth system

The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), CoMet (Carbon Dioxide and Methane) Mission

Confronting Climate Change is one of the paramount societal challenges of our time. The main cause for global warming is the increase of anthropogenic greenhouse gases in the Earth's atmosphere. Together, carbon dioxide and methane, being the two most important greenhouse gases, globally contribute to about 81% of the anthropogenic radiative forcing. However, there are still significant deficits in the knowledge about the budgets of these two major greenhouse gases such that the ability to accurately predict our future climate remains substantially compromised. Different feedback mechanisms which are insufficiently understood have significant impact on the quality of climate projections. In order to accurately predict future climate of our planet and support observing emission targets in the framework of international agreements, the investigation of sources and sinks of the greenhouse gases and their feedback mechanisms is indispensable. In the past years, inverse modelling has emerged as a key method for obtaining quantitative information on the sources and sinks of the greenhouse gases. However, this technique requires the availability of sufficient amounts of precise and independent data on various spatial scales. Therefore, observing the atmospheric concentrations of the greenhouse gases is of significant importance for this purpose. In contrast to point measurements, airborne instruments are able to provide regional-scale data of greenhouse gases which are urgently required, though currently lacking. Providing such data from remote sensing instruments supported by the best currently available in-situ sensors, and additionally comparing the results of the greenhouse gas columns retrieved from aircraft to the network of ground-based stations is the mission goal of the HALO CoMet campaign. The overarching objective of HALO CoMet is to improve our understanding and to better quantify the carbon dioxide and methane cycles. Through analysing the CoMet data, scientists will accumulate new knowledge on the global distribution and temporal variation of the greenhouse gases. These findings will help to better understand the global carbon cycle and its influence on climate. These new findings will be utilized for predicting future climate change and assessing its impact. Within the frame of CoMet and due to the operational possibilities we will concentrate on small to sub-continental scales. This does not only allow to identify local emission sources of greenhouse gases, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modelling approach for regional budgeting. The project also aims at developing new methodologies for greenhouse gas measurements, and promotes technological developments necessary for future Earth-observing satellites.

CO2-Haushalt der Atmosphaere

Die Groesse der Quellen und Senken fuer atmosphaerisches CO2 sind bislang noch unzureichend bekannt, um zukuenftige CO2-Gehalte der Atmosphaere vorhersagen zu koennen. Neben direkten Messungen des derzeitigen CO2-Anstiegs erlauben Isotopenuntersuchungen wichtige Rueckschluesse der CO2-Fluesse zwischen den einzelnen Reservoiren (Atmosphaere, Biosphaere, Hydrosphaere); Vorgaenge in der Vergangenheit lassen sich einzig und allein nur durch Isotopenuntersuchungen von fixiertem atmosphaerischen CO2 erkennen. Die Untersuchungen im Institut fuer Chemie befassen sich mit der Ermittlung des CO2-Inputs in die Atmosphaere aufgrund von C-13-Messungen an datierten Holzproben, um biosphaerische CO2-Senken oder Quellen der Vergangenheit erkennen zu koennen. Bisher vorliegende Messungen an Baeumen der noerdlichen Hemisphaere und des industriellen Zeitraumes sind statistisch genuegend abgesichert. Die Messungen sollen an Baeumen der suedlichen Hemisphaere und des vorindustriellen Zeitraumes weitergefuehrt werden. Daneben werden C-13 Messungen an derzeitigen atmosphaerischen CO2 Proben durchgefuehrt. Zur Modellauswertung der Ergebnisse sind ferner Isotopenuntersuchungen zum CO2-Austausch zwischen Atmosphaere und Meer erforderlich.

Demonstrating a Circular Carbon Economy in Transport along the Value Chain

Das CO2-System im Ozean: CO2-Verteilung und Analysenvergleich bei der Messung der Alkalinitaet, des gesamten geloesten anorganischen Kohlenstoffs und des pH im Nordatlantik auf der RSS DISCOVERY vom 10.-27. Juni 1990

REFOPLAN 2022 - Ressortforschungsplan 2022, Veränderungen der Ozeane als CO2-Senke im Klimasystem, die Rolle der Polargebiete und Bewertung potentieller Kipppunkte - Teil 1 (Fokus Arktis)

Die Ozeane sind allein schon durch ihre Masse ein zentrales Element des Klimasystems und des Kohlenstoffkreislaufes. Sie nehmen sehr hohe Mengen an Wärme und CO2 auf, verteilen sie über die Ozeanströmungen und puffern so unter anderem auch die anthropogenen Treibhausgase und Temperaturerhöhungen ab. Insbesondere die polaren Ozeane sind aufgrund der Bildung von Tiefenwasser wichtige CO2-Senken, die durch die zunehmende Erwärmung, den verstärkten Süßwassereintrag auf Grund der Land- und Meereisschmelze und auch durch die veränderte Meereschemie (z.B. Versauerung) gefährdet sind. Gleichzeitig nehmen Anzeichen zu, dass die globalen Meeresströmungen sich verändern und somit auch die Umverteilung von Wärme und Gasen beeinflusst wird. Das Vorhaben soll analysieren, welche Kipppunkte des Erd-Klimasystems in den Polargebieten verortet sind und welche Wissenslücken zur CO2-Aufnahmekapazität, insbesondere im Zusammenhang mit der biologischen Kohlenstoffpumpe, bestehen. Auf dieser Basis sollen die arktischen CO2-Senken definiert und quantifiziert sowie ihre zukünftige Rolle im sich veränderten globalen Klimasystem entsprechend aktueller IPCC-Klimaszenarien, bewertet werden. Dafür sollen im Vorhaben (Teil 1, Fokus Arktis) alle verfügbaren Daten für die Arktis gezielt weiterverarbeitet, ausgewertet und aufbereitet werden. Das übergeordnete Ziel ist, die politische Entscheidungsebene besser zu informieren und so die verstärkt benötigten Schutzambitionen in den Polarregionen zu unterstützen. Antarktisspezifische Analysen sind in einem zweiten Teilvorhaben geplant (vsl. 02/2025 bis 02/2026) und sollen - soweit möglich - in das Gesamtergebnis einfließen. Die vorläufigen Ergebnisse des Vorhabens sollen im Frühjahr 2025 in einer internationalen Fachveranstaltung (Fachkonferenz/Workshop) diskutiert und - soweit möglich - peer-reviewed publiziert werden.

Gasblasen in aquatischen Ökosystemen: Entstehung, Dynamik und Bedeutung für Stofftransport

Gasblasen mit Grössen zwischen einigen Mikrometern bis Zentimetern sind allgegenwärtig in aquatischen Ökosystemen. Sie beeinflussen nicht nur die physikalischen Eigenschaften des Wassers, sie ermöglichen auch einen wichtigen Transportweg mit hoher Relevanz für globale biogeochemische Kreisläufe und das Klima. An der Luft-Wasser-Grenzfläche beschleunigen Blasen den Gasaustausch und beeinflussen damit den globalen Kohlenstoffkreislauf. Aus Sedimenten freigesetzte Blasen (Ebullition) sind ein wichtiger Transportweg für Methan in die Atmosphäre. Darüber hinaus transportieren Blasen nicht nur Gase, sondern auch Partikel, gelöste Stoffe und Bakterien auf ihren Oberflächen. Dieses Material, darunter Kohlenstoff, Nährstoffe und Schadstoffe, stammt aus den Sedimenten oder wurde während des Aufstiegs aus der Wassersäule entfernt. Trotz dieser potenziellen Bedeutung ist wenig über Gasblasen und ihre Eigenschaften in Süßwasserökosystemen bekannt, bestehendes Wissen basiert hauptsächlich auf Beobachtungen in marinen Systemen. In diesem Projekt untersuchen wir diejenigen Prozesse, welche das Vorkommen und die Eigenschaften von Gasblasen in Süßwasserökosystemen kontrollieren, sowie die Rolle der Blasen für den Transport von Gasen, gelösten Stoffen und Partikeln. Wir unterscheiden zwischen Luftblasen die an der Wasseroberfläche eingetragen werden, Blasen die durch Gasübersättigung in der pelagischen Zone entstehen, sowie Blasen die in Sedimenten gebildet werden. Wir gehen davon aus, dass diese drei unterschiedlichen Arten von Blasen unterschiedliche Eigenschaften haben. Auf der Grundlage von Feldmessungen und Laborexperimenten untersuchen wir die Entstehung, Alterung und das Schicksal dieser drei Arten von Blasen und der von ihnen transportierten Substanzen in unterschiedlichen aquatischen Systemen. Die Beobachtungen und Ergebnisse werden mit prozessbasierten Modellen verknüpft um einen theoretisch fundierten und empirisch validierten Rahmen für die Bewertung der Relevanz von Stofftransport durch Gasblasen in aquatischen Ökosystemen zu entwickeln. Dies erlaubt die Übertragung der Ergebnisse dieses Projekts auf eine Vielzahl von Fragestellungen in unterschiedlichen Bereichen der aquatischen Forschung, der Gewässerüberwachung und des Gewässermanagements.

Demonstrating a Circular Carbon Economy in Transport along the Value Chain, Demonstrating a Circular Carbon Economy in Transport along the Value Chain (DeCarTrans)

Wechselwirkung der terrestrischen Biosphäre mit dem Klima und atmosphärischem CO2

1 2 3 4 569 70 71