API src

Found 271 results.

Development of an internal Reforming Alcohol High Temperature PEM Fuel Cell Stack

Das Projekt "Development of an internal Reforming Alcohol High Temperature PEM Fuel Cell Stack" wird vom Umweltbundesamt gefördert und von Institut für Mikrotechnik Mainz e.V. & Co. KG durchgeführt. The main objective of the proposal is the development of an internal reforming alcohol high temperature PEM fuel cell. Accomplishment of the project objective will be made through: Design and synthesis of robust polymer electrolyte membranes for HT-PEMFCs, which will be functional within the temperature range of 190-22OoC. Development of alcohol (methanol or ethanol) reforming catalysts for the production of CO-free hydrogen in the temperature range of HT PEMFCs, i.e. at 190-220oC. Integration of reforming catalyst and high temperature MEA in a compact Internal Reforming Alcohol High Temperature PEMFC (IRAFC). Integration may be achieved via different configurations as related to the Position of the reforming catalyst. The proposed compact system does away with conventional fuel processors and allows for efficient heat management. since the 'waste' heat produced by the fuel cell is in-situ utilized to drive the endothermic reforming reaction. The targeted power density of the system is 0.15 W/cm2 at a ceil voltage ofü.7 V. Thus, the concepts of a catalytic reformer and of a fuel cell are combined in a single, simplified direct alcohol (e.g. methanol) High Temperature PEM fuel cell reactor. The heart of the system is the membrane electrode assembly (MEA) comprising a high-temperature proton-conducting electrolyte sandwiched between the anodic (reforming catalyst + PUC) und cathodic Pt/C gas diffusion electrodes. According to the configuration und the operating conditions described above, the IRAFC is expected to be auto thermal, highly efficient and with zero CO emissions. In addition, the direct consumption ofH2 by the MEA (fuel cell) and the electrochemical promotion effect is expected to enhance the kinetics of reforming reactions, thus facilitating the efficient operation of the reforming catalyst at temperatures below 220 C.

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von SchwörerHaus KG durchgeführt. Im Rahmen dieses Verbund-Forschungsvorhabens soll ein modernes und nachhaltiges Heizungskonzept für energieeffiziente Gebäude entwickelt werden, die durch eine saisonale Speicherung, basierend auf thermochemischer Wärmespeicherung, eine möglichst vollständige Wärmeversorgung ermöglicht. Dieses Heizungskonzept, das die Basis für eine zukünftige nicht fossile Wärmeversorgung nicht nur im Neubaubereich darstellt. soll am Beispiel des neuen innovativen Gebäudetyps Flying Spaces der Schwörer Haus KG erarbeitet werden. Die geplante Technik lässt sich gut mit der erprobten Luftheizungstechnik von Schwörer Haus kombinieren. Vom Institut für Thermodynamik und Wärmetechnik, Universität Stuttgart (ITW) wird die benötigte Speichertechnologie entwickelt und das Solarkonzept auf Basis von numerischen Simulationsstudien erarbeitet. Vakuumröhren-Luftkollektoren, die horizontal auf dem Gebäudedach montiert werden, liefern die benötigte Wärme zur Beladung des thermo-chemischen Speichers. Die Integration des Konzepts in die Gebäudetechnik wird durch die Schwörer Haus KG entwickelt. Auf dem Freigelände des ITW soll ein Gebäude aufgebaut werden, in dem die zu entwickelnde Technik implementiert und messtechnisch untersucht werden soll. Durch ein Monitoring zunächst der bestehenden Heiztechnik und anschließend der neu entwickelten solaren Heiztechnik sollen die energetischen Vorteile nachprüfbar gemacht werden.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik im Forschungsverbund Berlin e.V. durchgeführt. Im Rahmen des Projekts sollen leistungsfähige und robuste UV-Wasserentkeimungsreaktoren auf Basis von UV-C-LEDs für den mobilen und dezentralen Einsatz entwickelt werden. Der Anteil des FBH besteht darin, entsprechende Arrays aus UV-C-LEDs zu designen und zu untersuchen. Ziel der ersten Projektphase ist es, die elektrooptischen Eigenschaften von UV-C-LEDs zu charakterisieren. Zusammen mit thermischen Simulationen ist dies die Grundlage für die Bereitstellung von Richtlinien für das Design eines UV-Reaktors, insbesondere für ein leistungsfähiges thermisches Management der LED-Arrays durch die Projektpartner. Ziel der zweiten Projektphase ist zum einen die Untersuchung des Alterungsverhaltens der UV-C-LEDs sowie der zugrunde liegenden physikalischen Mechanismen und zum anderen die Charakterisierung von UV-C-LED-Arrays. Das erarbeitete Wissen soll sowohl in die Entwicklung der Aufbau- und Verbindungstechnik für die Arrays sowie deren sensorischer Überwachung durch die Projektpartner einfließen. Die UV-LEDs werden elektrooptisch charakterisiert und Zuverlässigkeitstests unter verschiedenen Stressoren durchgeführt. Letzteres erfordert den Aufbau entsprechender Alterungsmessplätze. Weiterhin erfolgen thermische Simulationen verschiedener Array-Konzepte. Es wird die Performance aufgebauter UV-C-LED-Arrays untersucht. Die Ergebnisse gehen jeweils an die Projektpartner für das Design und den Aufbau eines effizienten UV-Wasserentkeimungsreaktors. Weitere Details siehe Projektantrag.

Teilprojekt D

Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von DVGW Deutscher Verein des Gas- und Wasserfaches e.V. - Technisch-wissenschaftlicher Verein - Technologiezentrum Wasser (TZW) durchgeführt. Ziel des Verbundprojektes 'UV-LEDIS' ist die Entwicklung einer alternativen Strahlungsquelle für die Wasserdesinfektion auf Basis von UV-C LED. Darüber hinaus soll ein sehr kompakter Reaktor zur Wasserdesinfektion entwickelt und aufgebaut werden, bei dem neuartige UV-C LED-Module als Strahlungsquellen zum Einsatz kommen. Mit dem neuen Reaktor soll mittelfristig eine Wasserdesinfektion bei einem Durchsatz von bis zu 1 Liter pro Minute realisiert werden. Das Entwicklungsvorhaben gliedert sich in sechs Arbeitspakete, zuzüglich der Projektkoordination und den Transfermaßnahmen. Einige Arbeitspakete sind inhaltlich in Unterarbeitspakete unterteilt. In jedem (Unter)Arbeitspaket übernimmt ein Projektpartner die Leitungsfunktion. Dieser koordiniert dann innerhalb des für das Arbeitspaket festgesetzten Zeitrahmens die Arbeitsschritte aller an diesem Arbeitspaket beteiligten Projektpartner, bündelt die Ergebnisse und bildet die Schnittstelle des Ergebnistransfers zu den anderen Arbeitspaketen. Die Entwicklungsarbeiten können in drei große Arbeitskomplexe aufgeteilt werden: Arbeitskomplex 1: Entwicklung von Konzepten für die einzelnen Reaktorkomponenten, Arbeitskomplex 2: Konstruktion und Aufbau der einzelnen Komponenten und Arbeitskomplex 3: Prototypenbau, Funktionstests und Optimierungsmaßnahmen.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Institut für Binnenfischerei e.V., Potsdam-Sacrow durchgeführt. Um eine Steigerung der Aquakulturerzeugung, insbesondere an hochpreisigen und stark nachgefragten Fischarten in Deutschland zu erreichen, treten Kreislaufanlagen (KLA) zunehmend in den Fokus des Interesses. Bei ihrem Betrieb muss mit Phosphor-Konzentrationen von etwa 2 - 30 mg - l-1 im Ablaufwasser gerechnet werden. Ziel dieses Forschungsvorhabens ist die Entwicklung und Erprobung eines praxistauglichen Verfahrens zur Phosphor-Elimination im Ablaufwasser von KLA zur Fischerzeugung. Zur Ermöglichung einer breiten Anwendbarkeit unter Praxisbedingungen soll das bewährte Verfahren der chemisch-physikalischen Phosphorentfernung für KLA angepasst werden. Für dieses Ziel kooperiert ein Unternehmen mit Erfahrung bei Konzeption und Konstruktion intensiver Fischhaltungssysteme und von Abwasserbehandlungsverfahren mit zwei Instituten der angewandten Fischereiforschung. Das zu entwickelnde Verfahrensprinzip muss eine kompakte Baugröße in modulartiger Ausführungsweise für die Unterbringung unter den meist beengten Platzverhältnissen in (bereits existierenden) Kreislaufanlagen aufweisen. Vergleichsweise geringe Volumenströme mit mittleren bis hohen P-Konzentrationen müssen effizient bewältigt werden. Im Batchbetrieb erfolgen zunächst Laborversuche zur P-Fällung/Flockung aus dem Ablaufwasser von KLA. Darauf aufbauend wird ein Modul zur P-Elimination aus KLA-Ablaufwasser konstruiert und im Praxismaßstab getestet.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von UMEX GmbH durchgeführt. Ziel des Verbundprojektes 'UV-LEDIS' ist die Entwicklung einer alternativen Strahlungsquelle für die Wasserdesinfektion auf Basis von UV-C LED. Darüber hinaus soll ein sehr kompakter Reaktor zur Wasserdesinfektion entwickelt und konstruiert werden, bei dem die entwickelten UV-C LED-Module als Strahlungsquellen zum Einsatz kommen. Mit dem neuen Reaktor soll mittelfristig ein Durchsatz von bis zu 5 Litern pro Minute realisiert werden. Die kompakte Bauweise verbunden mit einer geringen Stromaufnahme soll zukünftig den dezentralen, autarken Einsatz der Wasserdesinfektionsanlage in verschiedenen Anwendungsgebieten ermöglichen. Die Entwicklungsarbeiten können in drei große Arbeitskomplexe aufgeteilt werden. Im ersten Arbeitskomplex werden die Konzepte für die einzelnen Reaktorkomponenten entwickelt. Unter Zuhilfenahme von Modellen und verschiedenartigen Untersuchungen werden alternative Konzepte für einen Wasserentkeimungsreaktor mit UV-LED als UV-Strahlungsquelle entwickelt und ausgearbeitet. Arbeitskomplex 2 beschäftigt sich mit der Konstruktion und dem Aufbau der einzelnen Komponenten. Dabei müssen u.a. die UV-LED-Module charakterisiert, dimensioniert und parametriert werden, um die Elektronik und Sensorik entwickeln zu können. Im dritten Arbeitskomplex werden die Einzelkomponenten zu einem Gesamtsystem zusammengefügt und der Prototyp gebaut. Abschließend werden Funktionstest und Optimierungsmaßnahmen durchgeführt und die Entwicklung dokumentiert.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von IL Metronic Sensortechnik GmbH durchgeführt. Ziel des Verbundprojektes 'UV-LEDIS' ist die Entwicklung eines UV-Trinkwasserdesinfektionsreaktors mit UV-C-LED als Strahlungsquelle. Dafür werden im Rahmen des Projekts grundsätzlich zwei sich in der angestrebten Anwendung gegenseitig beeinflussende Technologien untersucht und entwickelt: zum einen werden leistungsfähige und zuverlässige UV-C-LED-Arrays entwickelt, zum anderen wird ein neuer sehr kompakter, robuster und energieeffizienter Durchflussreaktor mit einem Durchsatz von bis zu 1 Litern pro Minute entwickelt. Die kompakte Bauweise, verbunden mit einer geringen Stromaufnahme, soll zukünftig den denzentralen, autarken Einsatz des neuen Reaktors in verschiedenen Anwendungsgebieten ermöglichen. Die Entwicklungsarbeiten können in drei große Arbeitskomplexe aufgeteilt werden. Im ersten Arbeitskomplex werden die Konzepte für die einzelnen Reaktorkomponenten entwickelt: allgemeiner Reaktoraufbau, Sensorik und Messtechnik, UV-LED-Arrays. Arbeitskomplex 2 beschäftigt sich mit der Konstruktion und dem Aufbau der einzelnen Komponenten. Dabei müssen u.a. die UV-LED-Module charakterisiert, dimensioniert und parametriert werden um die Elektronik und Sensorik entwickeln zu können. Im dritten Arbeitskomplex werden die Einzelkomponenten zu einem Gesamtsystem zusammengefügt und der Prototyp gebaut. Abschließend werden Funktionstest und Optimierungsmaßnahmen durchgeführt und die Entwicklung dokumentiert.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Büro Waßmann Dipl.-Ing. Hartmut Waßmann durchgeführt. Viele Gewässer leiden unter einer rasanten Eutrophierung begleitet von der Entwicklung anoxischer Zonen. Zusätzliche Einleitungen von ungereinigtem Regen(ab)wasser im urbanen Raum führen zu Phasen mit Sauerstoffmangel im gesamten Gewässer und regelmäßigem Fischsterben. Gärprozesse, die Freisetzung von Gasen, die fischtoxisch sind (H2S) oder Klimarelevanz haben (z. B. Methan), sowie Ablagerungen toxischen Faulschlamms sind die Folge. Das vom KMU entwickelte Schäfersee-Verfahren® zeichnet sich durch die gleichzeitige Zufuhr von Calciumnitrat und Sauerstoff in anaerobe Wasserkörper aus. Diese neue Vorgehensweise induziert durch die Anwesenheit von diesen zwei Elektronenakzeptoren das optimale Zusammenspiel anaerober Nitratatmung und sauerstoffabhängiger Stoffwechselprozesse. Dadurch wird ein hocheffizienter mikrobieller Abbau von organischen Verbindungen und Schadstoffen ohne Gärvorgänge eingeleitet. Die gleichzeitige Stimulierung aerob und anaerober Abbauprozesse soll zu einer effektiven Reduzierung der Eutrophierungsfolgen in der oberen Sedimentschicht und dem Wasserkörper führen. Die wissenschaftliche Untersuchung einer möglichen verbesserten Abbauleistung von Schadstoffen im Sediment und Festlegung von Metallen und Phosphaten durch das Schäfersee-Verfahren stellt ein herausragendes Potential für diese Methode dar und stellt weitere Anwendungen in Aussicht. Die wissenschaftlichen Erkenntnisse der mikrobiellen Vorgänge, aus Untersuchungen an zwei hochbelasteten Seen (Großstadtbereich und Industriegewässer) fließen direkt in die Optimierung und angewandte Steuerung des Prozesses ein und ermöglichen die Etablierung eines umwelt-, bzw. klimaverträglichen Verfahrens. Durch die Weiterentwicklung zu einer marktreifen, kompakten und kostengünstigen Anlage wird eine Lösung für die Stützung von Problemgewässern geschaffen, die weltweit angewendet werden kann.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern durchgeführt. Um eine Steigerung der Aquakulturerzeugung, insbesondere an hochpreisigen und stark nachgefragten Fischarten in Deutschland zu erreichen, treten Kreislaufanlagen (KLA) zunehmend in den Focus des Interesses. Bei ihrem Betrieb muss mit Phosphor-Konzentrationen von etwa 2 - 30mg-l-1im Ablaufwasser gerechnet werden. Ziel dieses Forschungsvorhabens ist die Entwicklung und Erprobung eines praxistauglichen Verfahrens zur Phosphor-Elimination im Ablaufwasser von KLA zur Fischerzeugung. Zur Ermöglichung einer breiten Anwendbarkeit unter Praxisbedingungen soll das bewährte Verfahren der chemisch-physikalischen Phosphorentfernung für KLA angepasst werden. Für dieses Ziel kooperiert ein Unternehmen mit Erfahrungen bei Konzeption und Konstruktion intensiver Fischhaltungssysteme und von Abwasserbehandlungsverfahren mit zwei Instituten der angewandten Fischereiforschung. Das zu entwickelnde Verfahrensprinzip muss eine kompakte Baugröße in modulartiger Ausführungsweise für die Unterbringung unter den meist beengten Platzverhältnissen in (bereits existierenden) Kreislaufanlagen aufweisen. Vergleichsweise geringe Volumenströme mit mittleren bis hohen P-Konzentrationen müssen effizient bewältigt werden. Im Batchbetrieb erfolgen zunächst Laborversuche zur P-Fällung/Flockung aus dem Ablaufwasser von KLA. Darauf aufbauend wird ein Modul zur P-Elimination aus KLA-Ablaufwasser konstruiert und im Praxismaßstab getestet.

2-Stufen-Kompakt-Biogasanlage

Das Projekt "2-Stufen-Kompakt-Biogasanlage" wird vom Umweltbundesamt gefördert und von BEBRA Biogas GmbH durchgeführt. Ziel dieses Projektes ist es, eine moderne, universelle Biogasanlage zu entwickeln, die kostengünstig und effektiv sein soll. Außerdem sollte sie möglichst auch ohne Kofermente wirtschaftlich arbeiten können. Das Konzept führt zu einer zwei-stufigen Prozessführung um optimale Lebensbedingungen für die Bakterien zu schaffen. Stufe 1. mesophil bei Temperaturen zwischen 30-40 Grad Celsius - Stufe 2. thermophil bei 55 Grad Celsius. Durch die angepassten Reaktionsvolumina wird eine kompakte Bauweise erreicht. Das Gesamtsystem wird als Pilotanlage bei einem Schweinemastbetrieb getestet. Das Projekt befindet sich in der Inbetriebnahmephase. Bereits jetzt wurden Gasqualitäten mit ca. 70 Prozent Methananteil erreicht. Die Abbaurate der organischen Komponenten liegt bei mehr als 65 Prozent obwohl die Verweilzeit nur 12 Tage beträgt. Die Biogasanlage wurde im Mai 2002 in Betrieb genommen. Sie befindet sich derzeit noch in der Optimierungsphase.

1 2 3 4 526 27 28