Schwermetalle, auch wenn sie natürliche Bestandteile unserer Umwelt sind, sind ab bestimm ten Konzentrationen schädlich für Organismen. Organismen haben sich in ihrer Habitatwahl an das natürliche Vorkommen und die dortige Bioverfügbarkeit unter den gegebenen Umständen (pH, org-Gehalt, ...) angepasst. Durch menschliche Aktivitäten werden Schwermetalle verstärkt über die Atmosphäre in Umlauf gebracht und über Deposition in Habitaten wie Oberboden angereichert. Überschreiten die verfügbaren Konzentrationen nun bestimmte Schwellenwerte, so können schädliche Wirkungen für Mensch und Umwelt nicht mehr ausgeschlossen werden. Aus diesem Grund ist die Freisetzung von Schwermetallen in die Umwelt rechtlich geregelt. Zur Festlegung ungefährlicher Schwermetalldepositionen werden ökologische Schwellenwerte, sogenannte "Critical Loads" für Schwermetalle berechnet. Dabei handelt es sich um Konzentrationen in Umweltmatrizes, die nicht überschritten werden sollten um schädliche Effekte zu vermeiden. "Critical Loads" basieren auf "Critical Limits". Im Rahmen dieses Projektes sollen basierend auf einer weltweiten Literaturrecherche alle Studien seit einschließlich 2005, die sich mit chronischen Wirkungen erhöhter Schwermetallkonzentrationen auf terrestrische Lebewesen und Ökosystemfunktionen befassen, identifiziert und gelistet werden um aktuelle Werte zu finden, die für die "Critical Limits"-Berechnung genutzt werden können. Es ist nicht das Ziel dieses Projektes die relevanten Daten zu diskutieren oder auszuwerten. Eine Literaturdatenbank mit allen Referenzen und ein Excel-Dokument mit allen notwendigen Daten zur Berechnung von "Critical Limits" wurde an das Deutsche Umweltbundesamt übergeben. Zusätzlich wurde dieser zusammenfassende Bericht erstellt. Der Bericht listet die relevanten Referenzen mit Effektkonzentrationen, Endpunkten (z.B. Reproduktion), Organismengruppe und Art, sowie Bodenparameter in Tabellen und gibt eine kurze Zusammenfassung, aufgeteilt nach allen Schwermetallen, die in der Recherche gefunden wurden. Quelle: Forschungsbericht
Weltweit thematisieren zahlreiche Publikationen den Eintrag von Arzneimitteln aus verschiedenen Emissionsquellen in die Umwelt. Um diese enorme Datenmenge zu überschauen initiierte das Umweltbundesamt im Jahr 2014 ein Datenbankprojekt. Im Rahmen von zwei Projekten wurde seitdem die öffentlich zugängliche Datenbank "Arzneimittel in der Umwelt" (https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0) etabliert (aus der Beek et al., 2016) und optimiert (Dusi et al., 2019) und weltweite gemessene Konzentrationen von Arzneimittelrückständen in der Umwelt, die bis 2016 veröffentlicht wurden, eingetragen. Das Ziel dieses Projektes war die Aktualisierung der Datenbank mit Umweltkonzentrationen von Arzneimitteln, die im Zeitraum 2017 bis 2020 publiziert wurden. Als Ergebnis einer Literaturrecherche wurden während des Projektes 98.246 Umweltkonzentrationen aus 543 Publikationen in die Datenbank eingetragen. Die aktualisierte Datenbank enthält damit derzeit 276.895 Einträge mit Umweltkonzentrationen aus 2.062 Publikationen, gemessen in 89 Ländern. Zusätzlich wurden 632 Publikationen und 196 Review-Artikel für den Zeitraum 2017-2020, die Konzentrationen von Arzneimittelrückständen in der Umwelt thematisieren, zu einer bestehenden EndNote-Literatur-Datenbank hinzugefügt. Im Rahmen des Berichtes wird ein Überblick über die Umweltmatrices in denen Arzneimittelrückstände weltweit gemessen wurden und die am häufigsten gemessen Substanzen gegeben. Quelle: Forschungsberichte
Das Projekt "Residence times across scales: from plot to catchment scale" wird vom Umweltbundesamt gefördert und von Centre de Recherche Public Gabriel Lippmann, Departement Environnement et Agro-Biotechnologies durchgeführt. Residence times is a key signature to characterize flow and transport at all temporal and spatial scales in different hydrological compartments. It is assumed that the spatial organisation of the landscape controls space-time organisation of the water cycle and related processes and hence the residence time. Combining flux and residence concentration data of natural tracers in water, stable isotopes, and artificial tracers will allow us to predict residence time and flow pathways in the different hydrological compartments as well as integrative for entire watersheds. We will investigate with different methods the fingerprint of hydrological processes found in the signal of isotopic composition and natural and artificial tracers of soil, ground and stream water in space and time. The temporal variability of isotopes in soil water, groundwater and stream water will be combined to benchmark transport and flow models and to derive a new functional form of short to long-term transit time distributions. The spatial patterns of stable isotopes in the saturated and unsaturated zone will be used to derive long-term flow pathways, mixing patterns and the proportion of evaporation to transpiration. Artificial tracer experiments using salt and electric resistivities will vizualize and quantify internal flow pathways in particular preferential flow pathways.
Das Projekt "CSP-Finance Financing Concentrating Solar Power in the Middle East and North Africa" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. In June 2010, the DLR Group of Systems Analysis started an investigation about innovative financing of Concentrating Solar Power Plants (CSP) in countries of the Middle East and North Africa. We found a possible strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. The attached power point file shows some examples of time series of load and supply by CSP in the different load segments and shows the graphs used in the report. The attached Excel Sheet gives the time series of load and supply by CSP for the different load segments for a total reference year.
Das Projekt "Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften durchgeführt. Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Das Projekt "Soil-gas transport-processes as key factors for methane oxidation in soils" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.
Das Projekt "Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut, Arbeitsgruppe Bodenkunde und Bodenökologie durchgeführt. We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.
Das Projekt "Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.
Das Projekt "Messungen stabiler Isotopenverhältnisse in flüchtigen organischen Verbindungen im Ausfluss von Ballungszentren. Dieser Antrag ist ein Beitrag zu den HALO-Missionen EMeRGe-EU und EMeRGe-ASIA" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Physik durchgeführt. Die Auswirkungen von flüchtigen organischen Verbindungen (VOC) auf die Luftqualität und damit auf die Gesundheit der Menschen auf lokaler oder regionaler Skala sind direkt offenkundig durch die schädlichen Effekte auf die Lebenswelt. Noch bedeutender ist die kritische Rolle, die VOC in chemischen Prozessen der Atmosphäre einnehmen. Die Bildung vieler sekundärer organischer Schadstoffe in der Atmosphäre wie Ozon, Peroxide, Aldehyde, Peroxyacetylnitrate und sekundäre organische Aerosole hängt entscheidend von der Verfügbarkeit der VOC und ihrer Vorläufersubstanzen ab. Wir planen die Messung von Isotopenverhältnissen und Konzentrationen spezifischer VOC in der Abluft großer Ballungszentren (MPC) in Europa und Asien durch Einsatz des Luftprobensammlers MIRAH auf den HALO-Missionen EMeRGe-EU und EMeRGe-Asia. Die Luftproben werden im Labor mittels Gaschromatographie-Verbrennungs-Isotopen-Massenspektrometrie analysiert. Isotopenverhältnisse in VOC sind wertvolle Indikatoren zur Untersuchung von Reaktionen, die derzeitigen Messverfahren nicht direkt zugänglich sind. Transport- und Mischungsprozesse in der Atmosphäre können damit visualisiert werden, wertvolle Information über dominante Prozesse, an denen VOC beteiligt sind, gewonnen werden. Bereits in den letzten HALO-Missionen, TACTS/ESMVal und den beiden OMO-Missionen, konnten wir zeigen, dass die beantragte Messmethode ein sensitives Werkzeug ist, z.B. für Quellstudien von VOC, zur Ableitung von Transportwegen und deren Einfluss auf die Verteilung der VOC, zur Abschätzung des Mischungsgrads, der Unterscheidung zwischen dynamischen und chemischen Prozessen, als auch zur Untersuchung atmosphärischer Umwandlung und Verweilzeit spezifischer VOC. Die Wertstellung dieser Ergebnisse wird sogar noch gesteigert durch den Vergleich mit Ergebnissen aus 3-dimensionalen Chemie-Transport-Modellen. Die folgenden geplanten wissenschaftlichen Zielsetzungen betten sich in die übergreifenden Ziele von EMeRGe-EU and EMeRGe-ASIA: (1) Messung der Zusammensetzung der in Europa und Asien entspringenden Schadstofffahnen und Bestimmung des Beitrags bestimmter VOC an der Zusammensetzung der Atmosphäre; (2) Bestimmung der weitreichenden Luftverschmutzung sowie deren Einfluss auf die Verteilung bestimmter VOC; (3) Identifizierung möglicher Unterschiede im Transport und der Umwandlung von VOC, die mit besonderen einzigartigen Charakteristiken europäischer und asiatischer MPCs verbunden sind; (4) Identifizierung von Oxidations- und Zwischenprodukten des VOC-Abbaus; (5) Informationsgewinnung über Oxidationswege durch Messung von Vorläufer- und Oxidationsprodukten; (6) Altersbestimmung von Luftmassen in unterschiedlichen Stadien der Schadstofffahnen; (7) Gegenüberstellung photochemischer Prozessierung gegen Transport und Mischung; (8) Verbindung der Informationen aus Isotopenverhältnissen mit bestimmten regionalen meteorologischen Daten; (9) Bereitstellung der Messdaten für Chemietransportmodelle.
Das Projekt "Imaging and image simulation of organic target compound migration between different biogeochemical interfaces of a soil horizon using positron emission tomography and the lattice Boltzmann equation approach" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf, Forschungsstelle Leipzig, Institut für Ressourcenökologie, Abteilung Reaktiver Transport durchgeführt. We propose to use positron emission tomography (PET) for imaging of tracer migration in a soil horizon, to be coupled with image simulation using the lattice Boltzmann equation (LBE) modeling approach. PET enables direct visualization of inert KF or KBr solute migration at the soil horizon scale, but also reactive halogenated organic target (2,4-D and MCPA) compound migration down to nM concentrations once radiolabelling with 18F or 76Br marker is achieved. Retardation at biogeochemical interfaces with different sorption properties will thus be imaged in-situ. Theoretical image simulation for process verification will be enabled by introducing a multi-grid approach and additional kinetic boundary conditions in the parallelized LBE solver. As a boundary condition for the latter, the real pore scale and distribution of biogeochemical interfaces will be derived by X-ray computer-tomography (XCT) down to 300 nm spatial voxel resolution. The aim is to produce by both approaches velocity field movies due to heterogeneous biogeochemical retardation of the target compounds with high resolution in both the spatial and temporal scale (4D).
Origin | Count |
---|---|
Bund | 637 |
Type | Count |
---|---|
Förderprogramm | 635 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 635 |
Language | Count |
---|---|
Deutsch | 356 |
Englisch | 346 |
Resource type | Count |
---|---|
Keine | 444 |
Webseite | 193 |
Topic | Count |
---|---|
Boden | 524 |
Lebewesen & Lebensräume | 508 |
Luft | 394 |
Mensch & Umwelt | 637 |
Wasser | 488 |
Weitere | 637 |