API src

Found 67 results.

Related terms

Die globale Verteilung von 14 CO als Indikator fuer OH-Radikale

Das Projekt "Die globale Verteilung von 14 CO als Indikator fuer OH-Radikale" wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Institut für Chemie.Natuerliches 14 CO wird in der Atmosphaere hauptsaechlich durch kosmische Strahlung gebildet. Es wird dann fast ausschliesslich durch Reaktion mit OH-Radikalen zu 14 CO2 oxidiert. Die Produktionsrate ist sehr gut bekannt; Messungen der 14 CO-Verteilung lassen daher direkte Schluesse auf die entsprechende OH Verteilung zu. Zur Messung wird zunaechst das Kohlenmonoxid aus ca. 100 Kubikmeter Luft chemisch abgetrennt. Anschliessend wird der 14 C Gehalt in einer speziellen 'low level'-Zaehlapparatur mit geringem Volumen bestimmt. Bisher wurden Messungen in der Nordhemisphaere am Boden durchgefuehrt (Vols et al., 1979, 1980, 1981). Ergaenzende Messungen in der hoeheren Atmosphaere sowie der Suedhemisphaere zur besseren Absicherung der ermittelten OH-Verteilung sind in Vorbereitung.

Untersuchung von Aerosolnukleation, Aerosolwachstum und Wolkenaktivierung an der CLOUD-Kammer am CERN zur Erforschung des Einflusses auf das Klima

Das Projekt "Untersuchung von Aerosolnukleation, Aerosolwachstum und Wolkenaktivierung an der CLOUD-Kammer am CERN zur Erforschung des Einflusses auf das Klima" wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.

Untersuchung von Aerosolnukleation, Aerosolwachstum und Wolkenaktivierung an der CLOUD-Kammer am CERN zur Erforschung des Einflusses auf das Klima, Teilprojekt 1: Massenspektrometrie und Aerosolnukleation

Das Projekt "Untersuchung von Aerosolnukleation, Aerosolwachstum und Wolkenaktivierung an der CLOUD-Kammer am CERN zur Erforschung des Einflusses auf das Klima, Teilprojekt 1: Massenspektrometrie und Aerosolnukleation" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.

Strahlenbelastung des fliegenden Personals

Das Projekt "Strahlenbelastung des fliegenden Personals" wird/wurde gefördert durch: Universität Bremen. Es wird/wurde ausgeführt durch: Universität Bremen, Fachbereich 1 Physik und Elektrotechnik, Abteilung Medizinische Physik.Piloten und FlugbegleiterInnen gehoeren zu den Personen, die einer hohen Strahlenbelastung am Arbeitsplatz ausgesetzt sind. Die kosmische Strahlung in Flughoehe besteht ausschliesslich aus Sekundaerstrahlung (hauptsaechlich Neutronen und Gammastrahlung), die in Wechselwirkung von primaeren Teilchen mit den Atomen der Lufthuelle erzeugt wird. Die Exposition des Flugpersonals ist zudem abhaengig von der Flughoehe, der geomagnetischen Breite und der solaren Aktivitaet. Aufgrund der Komplexitaet des kosmischen Strahlenfeldes ist allerdings der Umfang der Exposition schwer zu bestimmen, und physikalische Messungen geben keinerlei Hinweise auf die biologische Wirksamkeit dieser Strahlung. Ueber Chromosomenanalysen in den peripheren Lymphozyten des menschlichen Blutes konnte in einer Pilotstudie an Personal aus dem Interkontinentalverkehr eine hochsignifikant erhoehte Strahlenbelastung festgestellt werden. Die Chromosomenanalyse eines weiteren Untersuchungskollektivs, das aus einer Gruppe von Concordepiloten besteht, steht kurz vor dem Abschluss. Ergebnisse aus strahlenbiologischen Experimenten im CERN, Genf, belegten eine sehr hohe biologische Wirksamkeit der kosmischen Strahlung im Niederdosisbereich. Die Resultate dieser Versuchsreihe (in-vitro) sollen mit den Ergebnissen aus den in-vivo Ansaetzen verglichen und im Hinblick auf die biologisch Wirksamkeit kleiner Dosen von Neutronen bewertet werden. Die Ergebnisse sollen der Einfuehrung des Strahlenschutzes fuer das Flugpersonal dienen.

Analysen von Eisbohrkernen von polaren Eisschilden

Das Projekt "Analysen von Eisbohrkernen von polaren Eisschilden" wird/wurde ausgeführt durch: Universität Bern, Physikalisches Institut.Eisproben, die feste Niederschlaege aus frueheren Epochen repraesentieren, werden durch Kernbohrungen auf polaren Eisschilden gesammelt. Bei Tiefbohrungen werden Proben von mehr als 100'000 Jahren Alter erhalten. Die Proben werden in unserem Labor auf Gasgehalt und Gaszusammensetzung, Gehalt radioaktiver Spuren und Saeurekonzentration analysiert. Die Resultate geben Aufschluss ueber die Umweltbedingungen zur Zeit des Niederschlags. Wichtigste Zielsetzungen sind: - Vorindustrieller Wert der CO2-Konzentration der Atmosphaere bestimmen - Natuerliche Schwankungen der atm. CO2-Konzentration und Auswirkungen auf - globales Klima untersuchen; - Ursachen der natuerlichen CO2-Schwankungen suchen; - Geschichte der globalen Auswirkung von Vulkanausbruechen rekonstruieren; - Veraenderungen der kosmischen Strahlung in der Vergangenheit untersuchen.

Direkte Radioisotopen-Datierung von sehr altem Eis

Das Projekt "Direkte Radioisotopen-Datierung von sehr altem Eis" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Wien, Institut für Isotopenforschung und Kernphysik.Die polaren Eiskappen bilden ein wertvolles Archiv, das atmosphärische und klimatische Vorgänge der Vergangenheit widerspiegelt. Die intensive Untersuchung von Eisbohrkernen erlaubt insbesondere das Paleo-Klima der Erde bis zu etwa 800,000 Jahre zurückzuverfolgen. Indirekte Datierungen von Eis in den Dry Valleys der Antarktis deuten darauf hin, dass Eis im Bereich von Millionen von Jahren existiert. Bisher war es aber nicht möglich dieses Eis direkt zu datieren. Das gegenwärtige Proposal schlägt die Verwendung von zwei kosmogenen Radioisotopen, 10Be (t1/2 = 1.386 Ma) und 26Al (t1/2 = 0.717 Ma) vor, deren Atom-Verhältnis, 26Al/10Be, als Chronometer für altes Eis verwendet werden kann. In einem geschlossenen System, wie es Eis sein könnte, nimmt das anfängliche 26Al/10Be Verhältnis mit zunehmendem Alter mit einer effektiven Halbwertszeit von 1.49 Ma ab. Das Verhältnis von zwei Radioisotopen mit ähnlichen Eigenschaften, sowohl die Produktion durch kosmische Strahlung als auch den atmosphärischen Transport betreffend, scheint besser geeignet für eine zuverlässige Datierung als ein einzelnes Radioisotope. Damit die Methode funktioniert, müssen folgende Voraussetzungen erfüllt sein: i) Das 26Al/10Be-Verhältnis im Niederschlag muss global sowohl örtlich als auch zeitlich konstant sein, ii) es darf außerdem nicht anfällig für Fraktionierung der beiden Radioisotope nach dem Einschluss ins Eis sein. Unser Ziel ist es, die Anwendbarkeit der Methode zur direkten Datierung von Eis im Bereich von 0.5 bis 5 Millionen Jahren experimentell zu beweisen. In einem vorhergegangenen FWF Projekt (P17442-N02, 'Das Studium von kosmogenem 26Al in Atmosphären- und Klimaforschung') wurden detaillierte Studien über das bis dahin nur schlecht bekannte meteorische 26Al und erste Messungen des 26Al/10Be Verhältnisses in der Atmosphäre und in tiefem Eis mit vielversprechendem Erfolg durchgeführt (Auer et al., Earth Planet. Sci, Lett., in press). Unser Vorschlag hier ist nun i) eine deutliche Verbesserung der analytischen Aspekte der Datierungsmethode gegenüber dem vorhergehenden Projekt, insbesondere eine wesentliche Verringerung der erforderlichen Eismenge und eine Ausweitung der Methode für Eis, das starke mineralische Verunreinigungen enthält, ii) eine Klärung der Ursachen für beobachtete Abweichungen (Fraktionierung) des 26Al/10Be Verhältnisses in tiefen Eisproben, und iii) eine Anwendung der geeignet verbesserten Methode zur Datierung von basalem Eis von Bohrkernen und von Millionen Jahre altem Eis von 'rock glaciers' in der Antarktis. Ein wichtiger Teil des Projekts ist die enge Zusammenarbeit mit der Eisgruppe des Instituts für Umweltphysik der Universität Heidelberg, welche uns in allen Aspekten die Eisproben betreffend zur Seite stehen wird. usw.

Medizin, Technik, Industrie

Jede Person ist im Alltag ionisierender Strahlung ausgesetzt, die natürlichen oder künstlichen Ursprungs sein kann. Die natürliche Strahlenbelastung in Deutschland beträgt im Durchschnitt ca. 2,1 Millisievert (mSv) im Jahr und setzt sich zusammen aus kosmischer Strahlung (0,3 mSv im Jahr), terrestrischer Strahlung (0,4 mSv im Jahr), der Aufnahme natürlicher radioaktiver Stoffe mit der Nahrung (0,3 mSv im Jahr) und dem Einatmen von Radon und seinen Folgeprodukten (1,1 mSv im Jahr). Sie hängt vor allem von Aufenthaltsort und Lebensgewohnheiten ab. Die künstliche Strahlenbelastung in Deutschland beträgt durchschnittlich ca. 1,9 mSv im Jahr und wird insbesondere durch technische und medizinische Anwendung ionisierender Strahlung verursacht. Weitere Informationen (Bundesamt für Strahlenschutz) Die Anwendung von ionisierender Strahlung und radioaktiven Stoffen in der Medizin umfasst verschiedene Verfahren und Techniken zur Untersuchung und Behandlung. Für Untersuchungen (diagnostische Medizin) wird Röntgen- und Gammastrahlung eingesetzt, um Organe und Strukturen des menschlichen Körpers sichtbar zu machen und dadurch Krankheiten oder Verletzungen zu identifizieren. Gängige Verfahren sind Röntgenaufnahme, Computertomographie (CT), Mammographie und nuklearmedizinische Bildgebung. Bei minimalinvasiven diagnostischen oder therapeutischen Eingriffen wird Röntgenstrahlung zur simultanen Bildgebung eingesetzt. Für Behandlungen (therapeutische Anwendung) werden ionisierende Strahlung und radioaktive Stoffe eingesetzt, um Krankheiten zu heilen und Schmerzen zu lindern. Zur Behandlung von Krebs werden bei der Strahlentherapie Tumorzellen gezielt zerstört und gleichzeitig gesundes Gewebe so weit wie möglich geschont. In der Strahlentherapie wirkt ionisierende Strahlung entweder von außen ein (Teletherapie) oder die Strahlung wird direkt in den Tumor eingebracht (Brachytherapie). In der palliativen Strahlentherapie wird ionisierende Strahlung nur noch zur Schmerzlinderung bei bösartigen Tumoren oder Metastasen eingesetzt. Dabei werden hohe Einzeldosen in wenigen Sitzungen appliziert. In der Nuklearmedizin werden dem Körper radioaktive Stoffe zugeführt, um Informationen über Organfunktionen oder Stoffwechselprozesse zu erhalten. Dies ermöglicht die Diagnose und Behandlung verschiedener Erkrankungen wie Krebs, Herzerkrankungen oder Schilddrüsen-Funktionsstörungen. Die Positronen-Emissions-Tomographie (PET), die Einzelphotonen-Emissionscomputertomographie (SPECT) oder die Radiojodtherapie sind nur einige Beispiele für nuklearmedizinische Techniken. Die Anwendung von ionisierender Strahlung und radioaktiven Stoffen in Technik und Industrie ist aus vielen Bereichen und Prozessen nicht mehr wegzudenken. In der zerstörungsfreien Werkstoffprüfung und Qualitätssicherung werden hochradioaktive Quellen eingesetzt, um Materialien auf ihre physikalischen, chemischen oder strukturellen Eigenschaften zu überprüfen. Röntgen- und Gammastrahlen ermöglichen die Durchleuchtung von Bauteilen sowie die Prüfung von Schweißnähten, Druckbehältern und Rohrleitungen, um mögliche Defekte identifizieren zu können. In der Messtechnik finden radioaktive Isotope bei Messungen des Füllstands, der Dichte oder des Durchflusses in Rohrleitungen oder Behältern Anwendung. Mit radioaktiven Messsonden (Troxlersonden) ermittelt man zerstörungsfrei die Dichte und die Feuchte im Hoch-, Straßen- und Tiefbau. In der Strahlensterilisation werden hochradioaktive Quellen verwendet, um z.B. Medizinprodukte, Lebensmittel (empfindliches Gemüse, Gewürze, etc.) oder Verpackungen von Mikroorganismen zu befreien. In großen Krankenhäusern und Blutbanken können Blutprodukte vor einer Transfusion mit hohen Dosen bestrahlt werden, um alle DNA-haltigen Zellen zu zerstören. Dadurch sollen seltene aber tödliche Transfusionsreaktionen bei Personen verhindert werden, die z.B. eine Knochenmark- oder Blut-Stammzelltransplantation hinter oder unmittelbar vor sich haben. Die Anwendung ionisierender Strahlung und radioaktiver Stoffe in der medizinischen Forschung spielt eine entscheidende Rolle für die Weiterentwicklung von Diagnose- und Behandlungsmethoden. Sie ermöglicht die Erforschung von Krankheitsmechanismen, die Entwicklung neuer Medikamente und die Bewertung der Wirksamkeit von Behandlungen. Bei all diesen Anwendungen sind die strikte Einhaltung von Strahlenschutzmaßnahmen und umfangreiche Qualitätskontrollen von höchster Bedeutung, um die Strahlenbelastung des Personals und der behandelten Personen so gering wie möglich zu halten, negative Auswirkungen auf die allgemeine Bevölkerung und die Umwelt zu vermeiden und die sichere Anwendung zu gewährleisten.

Höhenstrahlung und Fliegen

Höhenstrahlung und Fliegen Viele Menschen reisen mit dem Flugzeug und legen weite Entfernungen in Höhen und geografischen Breiten zurück, in denen deutlich mehr Strahlung auf den Menschen einwirkt als am Boden. Wie entsteht diese Strahlung ? Und wie wirkt sie sich auf die Gesundheit aus? Antworten liefert diese Broschüre. Höhenstrahlung und Fliegen (PDF, 661 KB, Datei ist barrierefrei⁄barrierearm) Stand: 01.12.2024

Überwachung des fliegenden Personals

Überwachung des fliegenden Personals In großen Höhen wirkt deutlich mehr Höhenstrahlung auf den Menschen als am Boden. Piloten und flugbegleitendes Personal sind als beruflich strahlenexponierte Personen überwachungspflichtig, wenn sie während der Flüge durch Höhenstrahlung eine effektive Dosis von mehr als 1 Millisievert im Kalenderjahr erhalten können. Das Strahlenschutzregister des BfS erfasst seit August 2003 die monatlich ermittelten Dosiswerte des fliegenden Personals. Für das Flugpersonal wird die Strahlenbelastung pro Flug mittels anerkannter Rechenprogramme anhand von Flugdaten berechnet. Die Prüfung von Rechenprogrammen zur Abschätzung der Körperdosis des fliegenden Personals im Rahmen der Anerkennungsverfahren beim Luftfahrt-Bundesamt erfolgt durch das BfS . Strahlenbelastung in unterschiedlichen Höhen In großen Höhen wirkt deutlich mehr Höhenstrahlung auf den Menschen als am Boden. Im Flugzeug gibt es keine effiziente Möglichkeit, sich dagegen abzuschirmen. Piloten und flugbegleitendes Personal können daher, vor allem wenn sie häufig Langstrecken auf den Polrouten fliegen, Strahlendosen erhalten, die durchaus vergleichbar sind mit Dosiswerten von Berufsgruppen, die ionisierende Strahlung einsetzen oder die mit radioaktiven Quellen umgehen. Strahlenschutzüberwachung des fliegenden Personals Die EU -Richtlinie 96/29 EURATOM , die durch die EU -Richtlinie 2013/59 EURATOM ersetzt wurde, verlangte eine Strahlenschutzüberwachung des fliegenden Personals. In Deutschland wurde diese Forderung erstmals 2001 mit der Novelle der Strahlenschutzverordnung und 2018 mit dem Strahlenschutzgesetz (StrSchG) in Verbindung mit der neuen Strahlenschutzverordnung (StrSchV) in nationales Recht umgesetzt: Überwachungspflichtig ist Luftfahrtpersonal dann, wenn es in einem Beschäftigungsverhältnis gemäß deutschem Arbeitsrecht steht und während der Flüge durch Höhenstrahlung eine effektive Dosis von mehr als 1 Millisievert im Kalenderjahr erhalten kann. Für diese Beschäftigten ist die Körperdosis zu ermitteln, zu begrenzen und unter Berücksichtigung des Einzelfalls zu reduzieren. Die Betreiber von Flugzeugen sind verpflichtet, die Dosiswerte zu ermitteln und durch eine entsprechende Planung des Personaleinsatzes und der Flugrouten die Strahlendosis ihrer Beschäftigten zu reduzieren. Strahlenschutzregister des BfS erfasst Strahlenbelastung des Cockpit- und Kabinenpersonals deutscher Luftfahrtgesellschaften Die monatlich ermittelten Dosiswerte des fliegenden Personals werden seit August 2003 im Strahlenschutzregister des BfS erfasst. Es überwacht unter anderem die Einhaltung der Grenzwerte der zulässigen Jahresdosen und die Berufslebensdosis. Da die physikalischen Bedingungen auf Flügen sehr genau bekannt sind, wird die Strahlenbelastung pro Flug anhand von Flugdaten berechnet. Dazu dürfen die Fluggesellschaften die vom Luftfahrt-Bundesam t zugelassenen Computerprogramme einsetzen. Die für die Zulassung erforderliche Prüfung dieser Rechenprogramme übernimmt das BfS . Es legt dahingehend auch die Anforderungen für eine erfolgreiche Anerkennung fest. Die Programme ermitteln auf der Basis von physikalischen Messungen (zum Beispiel der Neutronenflussdichte) und anhand der Flugdaten (Start- und Zielflughafen, Flugdauer und -höhe, Datum) die effektive Dosis , die aus dem jeweiligen Flug resultiert. Die Fluggesellschaften melden die errechneten Werte an das Luftfahrt-Bundesamt, das die Aufsicht über das fliegende Personal führt und unter anderem die Einhaltung von Dosisgrenzwerten überwacht. Dies gewährleistet auch für das fliegende Personal eine rechtlich abgesicherte Strahlenschutzüberwachung. Das Luftfahrt-Bundesamt übermittelt jeweils die Monatsdosen der Beschäftigten an das Strahlenschutzregister des BfS . Mittlere effektive Jahresdosis der beruflich strahlenexponierten Personen in verschiedenen Berufsgruppen im Jahr 2023 (N = Anzahl der messbar strahlenexponierten Personen pro Berufsgruppe) Berufsgruppe mit vergleichsweise hoher Strahlenbelastung Das fliegende Personal stellte 2023 mit rund 38.000 Beschäftigten etwa neun Prozent aller beruflich strahlenschutzüberwachten Personen, die im Strahlenschutzregister des BfS geführt werden. Diese neun Prozent erhalten mit einer Kollektivdosis von zirka 44 Personen-Sievert zwei Drittel der gesamten beruflich bedingten Strahlendosis in Deutschland. Die Abbildung zur mittleren effektiven Jahres im Jahr 2023 zeigt, dass das fliegende Personal mit einer durchschnittlichen effektiven Jahresdosis von 1,2 Millisievert nach den Beschäftigen an Radon-Arbeitsplätzen an Platz zwei der strahlenexponierten Berufsgruppen steht. Die durchschnittliche Strahlenbelastung des medizinischen Personals liegt im Vergleich dazu mit einer effektiven Jahresdosis von 0,3 Millisievert deutlich niedriger. Vergleich der Häufigkeitsverteilungen der Jahresdosis beruflich strahlenexponierter Personen in verschiedenen Bereichen im Jahr 2023 Charakteristisch ist auch der Unterschied bei den Dosisverteilungen, wie die Abbildung zur Häufigkeitsverteilung der Jahresdosis beruflich strahlenexponierter Personen im Jahr 2023 zeigt: Beim fliegenden Personal (blaue Balken) sind Jahresdosiswerte von 1,0 bis 1,5 Millisievert am häufigsten, alle anderen verteilen sich in etwa symmetrisch um diese Gruppe. Dagegen haben in den anderen beruflichen Bereichen Medizin, Forschung, Kerntechnik und Industrie (rote Balken) die meisten strahlenexponierten Personen nur Dosiswerte bis 0,5 Millisievert ; mit steigenden Dosiswerten fallen die Häufigkeiten dann steil ab. Dennoch sind für die Berufsgruppen, die ionisierende Strahlung einsetzen oder mit radioaktiven Quellen umgehen, Jahresdosen bis 20 mSv pro Jahr möglich. Im Vergleich werden beim fliegenden Personal Jahresdosen über acht Millisievert praktisch nicht beobachtet. Begrenzte Möglichkeiten zur Minimierung der Strahlenbelastung Es ist bislang technisch nicht möglich, Flugzeuge gegen die Höhenstrahlung abzuschirmen. Geringere Flughöhen oder weniger dosisintensive Flugrouten sind in der Regel nicht zielführend, da sie Kosten und Umweltbelastung erhöhen; außerdem begrenzen die Belange der Flugsicherheit, die immer Priorität haben, den Handlungsspielraum. Die Möglichkeiten des Strahlenschutzes beschränken sich daher auf vergleichsweise wenige Maßnahmen bei der Flugplanung, um Routendosen zu senken, sowie bei der Einsatzplanung der Crews, um eine möglichst faire Verteilung der Dosis auf das Personal zu erreichen. Stand: 11.12.2024

Integriertes Mess- und Informationssystem IMIS

Integriertes Mess- und Informationssystem IMIS Das BfS betreibt das integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt (kurz IMIS ). Die in Deutschland auf gesetzlicher Grundlage erhobenen Messdaten zur Umweltradioaktivität werden im IMIS erfasst, ausgewertet und dargestellt. Bei einem kerntechnischen Unfall bilden die Messergebnisse und die berechneten Prognosen für die Strahlenbelastung die Grundlage für Entscheidungen zum Schutz der Gesundheit der Bevölkerung und der Umwelt. Aufgabe des integrierten Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) ist es, die Umwelt kontinuierlich zu überwachen, um schnell und zuverlässig bereits geringfügige Änderungen der Radioaktivität in der Umwelt flächendeckend erkennen sowie langfristige Trends erfassen zu können. An diesem Messprogramm zur Überwachung der Umwelt sind mehr als 50 Labore bei Bundesbehörden und in den Ländern beteiligt. Kontinuierlich arbeitende Messnetze sind für die Überwachung der Radioaktivität am Boden, in der Atmosphäre, in den Bundeswasserstraßen sowie in Nordsee und Ostsee eingerichtet. Sie liefern permanent aktuelle Messdaten. Zusätzlich werden im Routinebetrieb bundesweit jährlich mehr als 10.000 Proben aus der Luft, dem Wasser, dem Boden, Nahrungsmitteln, Futtermitteln und weiteren Umweltbereichen entnommen und Messungen durchgeführt. Schnelle Erfassung der radiologischen Lage Das IMIS ist vor allem für eine schnelle Erfassung der radiologischen Lage in einer Notfallsituation ausgelegt. Um Entscheidungen über Maßnahmen zum Schutz des Menschen und der Umwelt treffen zu können, muss das IMIS drei Informationen umgehend und zuverlässig liefern: Welche Gebiete sind betroffen und wie hoch sind die Kontaminationen? Welche Radionuklide spielen eine Rolle? Wie hoch sind die aktuelle und die zu erwartende Strahlenbelastung der Menschen in betroffenen Gebieten? Organisatorische Gliederung Das IMIS setzt sich aus mehreren Komponenten zusammen, die eng miteinander verflochten und aufeinander abgestimmt sind. In einem radiologischen Notfall wird das IMIS als ein Instrument zur Erfüllung der Aufgaben des Radiologischen Lagezentrums des Bundes ( RLZ ) eingesetzt. Dabei lassen sich drei Ebenen unterscheiden: Messungen der Umweltkontamination und prognostische Dosisabschätzungen , Prüfung, Zusammenführung, Aufbereitung und Darstellung der Ergebnisse, die in Lageberichte als Produkt des RLZ münden, Übermittlung der Lageberichte an die Kopfstelle des RLZ im Bundesumweltministerium. Geschichte und Einsatzgebiete Geschichte Gamma-Ortsdosisleistung (ODL) Messstrategien im Notfall Labore Geschichte Errichtung des Messsystems: Konsequenz aus Reaktorunfall von Tschornobyl (russ.: Tschernobyl) Beim Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) im Jahr 1986 zeigte sich, dass die Vorbereitungen auf eine großräumige Kontamination der Umwelt nicht ausreichend waren: Die Messungen wurden nicht systematisch durchgeführt und waren nicht aufeinander abgestimmt. Die Dosisabschätzungen sowie der Datenaustausch über Telefax und Fernschreiber waren zeitaufwändig und schwierig. Eine Darstellung der Ergebnisse fand allenfalls in Form von Tabellen statt. Die Erstellung übersichtlicher Graphiken war kompliziert und wurde deshalb so gut wie nicht praktiziert. Dies hat dazu beigetragen, dass die Situation von verschiedenen Stellen unterschiedlich bewertet wurde, was zu erheblichen Verunsicherungen in der Bevölkerung führte. Als Konsequenz aus diesen Erfahrungen wurde noch im Jahr 1986 das Strahlenschutzvorsorgegesetz ( StrVG ) verabschiedet, das bis zum Jahr 2017 die gesetzliche Grundlage für das "Integrierte Mess- und Informationssystems für die Überwachung der Radioaktivität in der Umwelt" ( IMIS ) war. Die betreffenden Bestimmungen des Strahlenschutzvorsorgegesetzes wurden in das aktuelle Strahlenschutzgesetz ( StrlSchG ) übernommen. Gamma-Ortsdosisleistung (ODL) Überwachung der Gamma-Ortsdosisleistung Das BfS betreibt ein bundesweites Messnetz zur großräumigen Ermittlung der äußeren Strahlenbelastung durch die kontinuierliche Messung der Gamma-Ortsdosisleistung ( ODL ). Das ODL-Messnetz besteht aus rund 1.700 ortsfesten, automatisch arbeitenden Messstellen, die flächendeckend über Deutschland verteilt sind. Das ODL -Messnetz besitzt eine wichtige Frühwarnfunktion, um erhöhte radioaktive Kontaminationen in der Luft in Deutschland schnell zu erkennen. Gamma-Ortsdosisleistung beinhaltet natürliche Strahlung Mit dem ODL -Messnetz wird auch die natürliche Strahlung erfasst, der der Mensch ständig ausgesetzt ist. Die gemessene Gamma-Ortsdosisleistung ( ODL ) erfasst die terrestrische Komponente, die durch überall im Boden vorkommende natürliche Radionuklide verursacht wird. Ursache sind Spuren von Kalium, Uran und Thorium, die natürliche Bestandteile von Gesteinen, Böden und Baumaterialien sind. Diese natürliche Strahlung führt im Routinebetrieb zu regelmäßig registrierten Messwerten. Daneben ist der Mensch einer natürlichen Strahlung ausgesetzt, die ihren Ursprung im Weltraum hat und abgeschwächt durch die Atmosphäre die Erdoberfläche erreicht ( Höhenstrahlung , kosmische Strahlung ). Die ODL wird in der Einheit Mikrosievert pro Stunde angegeben. Die natürliche ODL bewegt sich in Deutschland je nach örtlichen Gegebenheiten zwischen 0,05 und 0,18 Mikrosievert pro Stunde. Aktuelle Messwerte online einsehen Auf der BfS -Internetseite ODL -Info zeigt eine Karte die Gamma-Ortsdosisleistung ( ODL ) an den betriebsbereiten Messstellen des ODL -Messnetzes des BfS . Der aktuelle Messwert ist dabei der letzte verfügbare Stundenmittelwert. Die Messwerte werden täglich von Experten auf mögliche Besonderheiten und Fehler durch defekte Sonden geprüft und anschließend an das IMIS übermittelt. Wie auch weitere Daten zur Umweltradioaktivität in Deutschland werden die ODL -Messdaten auch im BfS -Geoportal für die Öffentlichkeit bereitgestellt. Weitere Informationen Überwachung der Gamma-Ortsdosisleistung Messstrategien im Notfall Messung der Strahlenbelastung im Notfall In einem Notfall wird das IMIS in den "Intensivbetrieb" versetzt und es wird ein "Intensivmessprogramm" durchgeführt, um die radiologische Lage schnell und flächendeckend zu erfassen. Während des Durchzugs einer radioaktiven Wolke: Messnetze im Einsatz Wichtigste Hilfsmittel in der Phase während des Durchzugs einer radioaktiven Wolke sind die automatischen Messnetze des Bundesamtes für Strahlenschutz ( BfS ) zur Ermittlung der äußeren Strahlenbelastung ( Ortsdosisleistung , ODL - ) und des Deutschen Wetterdienstes ( DWD ) zur Bestimmung der Konzentrationen der einzelnen Radionuklide in der Luft. Bei einem Unfall werden die Messergebnisse der ODL von zirka 1.700 Standorten im Zehn-Minuten-Rhythmus abgerufen. So können die Ausbreitung einer radioaktiven Schadstoffwolke annähernd in Echtzeit verfolgt und die betroffenen Gebiete sehr schnell eingegrenzt werden. Parallel dazu liefern die 48 Stationen des Luftmessnetzes des Deutschen Wetterdienstes die Konzentrationen radioaktiver Stoffe in der Luft im Zwei-Stunden-Takt. Die Messungen des ODL -Messnetzes und der DWD -Stationen bilden die Grundlage, um die äußere Strahlenbelastung und die durch das Einatmen radioaktiver Stoffe erhaltene Dosis abzuschätzen. Beides wird für die in der Frühphase relevanten Entscheidungen über Maßnahmen zum Schutz der Bevölkerung bewertet (Katastrophenschutzmaßnahmen bezüglich des Verbleibens im Haus, der Einnahme von Jodtabletten und der Evakuierung). Nach Durchzug einer radioaktiven Wolke: Ablagerung am Boden Nach dem Durchzug der Wolke werden Übersichtskarten erstellt, die die Kontamination der Umwelt darstellen. Diese Übersichtskarten sind dazu geeignet, die Maßnahmen zum Schutz der Bevölkerung und die Fortsetzung der Radioaktivitätsmessungen zu optimieren. Zur Erstellung der Übersichtskarten dienen vor allem Messungen der ODL und der In-situ-Gammaspektrometrie , mit denen das Ausmaß der Radionuklidablagerungen auf dem Boden vor Ort analysiert wird. Für die Erfassung kleinräumiger, inhomogener Ablagerungen stehen mit Hubschraubern und Messfahrzeugen mobile Einheiten zur Verfügung. Messschwerpunkt landwirtschaftliche Produkte Nachdem die radioaktive Wolke aus einer Region abgezogen ist, liegt ein Fokus auf der Untersuchung der potentiellen Kontamination landwirtschaftlicher Produkte. Werden in der Region keine Katastrophenschutzmaßnahmen ergriffen und ist somit die Entnahme von Proben landwirtschaftlicher Produkte erlaubt, richten die Messstellen der Bundesländer den Schwerpunkt ihrer Messungen zunächst auf die repräsentativen Umweltmedien Blattgemüse, Milch und Gras und anschließend auf erntereife Produkte. Messungen werden in den Gebieten verdichtet, in denen die bereits vorliegenden Messwerte erhöhte Aktivitäten anzeigen und die Überschreitung der EU -Höchstwerte zu befürchten ist. Das Intensivmessprogramm geht situationsabhängig und schrittweise wieder in das Routinemessprogramm über. Intensivierte Messungen werden in dieser Phase weiter in Bereichen durchgeführt, in denen (auch zeitverzögert) noch erhöhte Aktivitätskonzentrationen auftreten können, wie zum Beispiel in der Milch bei einer Winterfütterung mit kontaminiertem Heu. Labore Messlabore des Bundes und der Länder In das IMIS fließen Daten aus einer Vielzahl von Laboren aus Bund und Ländern ein. Messlabore des BfS Das Bundesamt für Strahlenschutz ( BfS ) ist mit hochspezialisierten Laboren in der Lage, Radionuklide in praktisch allen Medien wie etwa Wasser, Boden, Luft und Lebensmitteln zu bestimmen. Das Aufgabenspektrum reicht von der Emissionsüberwachung von Kernkraftwerken über die Überwachung radioaktiver Stoffe in der Umwelt bis hin zur Spurenanalyse radioaktiver Stoffe in der Atmosphäre zur Überwachung des Kernwaffenteststoppabkommens . Weitere Messlabore des Bundes Weitere Bundeseinrichtungen, deren Labormessungen in das IMIS einfließen bzw. die Messwerte der Länderlabore prüfen, sind der Deutsche Wetterdienst ( DWD ) die Bundesanstalt für Gewässerkunde ( BfG ) das Bundesamt für Seeschifffahrt und Hydrographie ( BSH ) das Max-Rubner-Institut ( MRI ) und das Johann Heinrich von Thünen-Institut . Messlabore der Länder Etwa 40 spezialisierte Labore der Länder bestimmen die Radioaktivitätskonzentration verschiedener Umweltmedien, beispielsweise Trinkwasser oder Lebens- und Futtermittel. Dabei werden einheitliche Probeentnahme- und Messverfahren angewendet. Im Routinebetrieb werden im Jahr rund 10.000 Proben gemessen. Daten sind öffentlich Die von den Laboren für das IMIS ermittelten Daten sind im Geoportal des BfS öffentlich zugänglich. Weitere Informationen Labore des BfS zur Analyse und Messung radioaktiver Stoffe Spurenanalyse im BfS Allgemeine Umweltüberwachung ( BMUKN ) Emissionsüberwachung von Kernkraftwerken Überwachung radioaktiver Stoffe in der Umwelt Information und Dokumentation: Austausch von Informationen über IMIS Alle Mess- und Prognoseergebnisse aus dem Integrierten Mess- und Informationssystem ( IMIS ) werden in der Zentralstelle des Bundes ( ZdB ) beim Bundesamt für Strahlenschutz ( BfS ) gesammelt, ausgewertet und in Form von Tabellen, Grafiken und Karten dargestellt. Fachbehörden des Bundes, die sogenannten Leitstellen, prüfen die Daten und Auswertungsergebnisse auf Plausibilität. Das IMIS vernetzt rund 70 Institutionen (Bundesbehörden, Landesministerien und -behörden, Landesmessstellen etc. ) mit mehreren hundert geschulten IMIS -Nutzer*innen, die spezielle Webanwendungen für die Arbeit mit den zentralen IMIS -Komponenten verwenden. Für ein schnelles und angemessenes Handeln ist es notwendig, die Daten und Informationen sehr schnell und zeitgleich allen Entscheidungsträgern in Bund- und Ländern zur Verfügung zu stellen. Dazu wurde die " Elektronische Lagedarstellung " ( ELAN ) entwickelt. Elektronische Lagedarstellung ( ELAN ) In ELAN werden alle für die Beurteilung eines Ereignisfalls, z. B. ein Zwischenfall in einem Kernkraftwerk, relevanten Informationen und Ergebnisse aus dem IMIS bereitgestellt. So ist gewährleistet, dass alle am Management einer Unfallsituation beteiligten Stellen schnell über dieselben Informationen verfügen und handlungsfähig sind. Internationaler Informationsaustausch Im internationalen Maßstab erfolgt ein bilateraler Informations- und Datenaustausch mit der Schweiz, Frankreich den Niederlanden und Österreich ebenfalls über IMIS . Übergreifend werden über die Datenaustauschplattformen EURDEP der EU mit den europäischen Staaten und IRMIS der IAEA mit weltweiten Partnern Informationen über die Radioaktivität in der Umwelt und die Strahlenbelastung in Folge von nuklearen Notfällen geteilt. Berichte Umweltradioaktivität und Strahlenbelastung Das BfS stellt die in der Bundesrepublik Deutschland gemessenen und erhobenen Daten zur Umweltradioaktivität jährlich zusammen und berichtet hierzu mit verschiedenen Themenschwerpunkten. Jedes Jahr werden die Ergebnisse in dem Bericht "Umweltradioaktivität und Strahlenbelastung" zusammengefasst. Stand: 10.09.2024

1 2 3 4 5 6 7