API src

Found 58 results.

Related terms

Integriertes Mess- und Informationssystem IMIS

Integriertes Mess- und Informationssystem IMIS Das BfS betreibt das integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt (kurz IMIS ). Die in Deutschland auf gesetzlicher Grundlage erhobenen Messdaten zur Umweltradioaktivität werden im IMIS erfasst, ausgewertet und dargestellt. Bei einem kerntechnischen Unfall bilden die Messergebnisse und die berechneten Prognosen für die Strahlenbelastung die Grundlage für Entscheidungen zum Schutz der Gesundheit der Bevölkerung und der Umwelt. Aufgabe des integrierten Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) ist es, die Umwelt kontinuierlich zu überwachen, um schnell und zuverlässig bereits geringfügige Änderungen der Radioaktivität in der Umwelt flächendeckend erkennen sowie langfristige Trends erfassen zu können. An diesem Messprogramm zur Überwachung der Umwelt sind mehr als 50 Labore bei Bundesbehörden und in den Ländern beteiligt. Kontinuierlich arbeitende Messnetze sind für die Überwachung der Radioaktivität am Boden, in der Atmosphäre, in den Bundeswasserstraßen sowie in Nordsee und Ostsee eingerichtet. Sie liefern permanent aktuelle Messdaten. Zusätzlich werden im Routinebetrieb bundesweit jährlich mehr als 10.000 Proben aus der Luft, dem Wasser, dem Boden, Nahrungsmitteln, Futtermitteln und weiteren Umweltbereichen entnommen und Messungen durchgeführt. Schnelle Erfassung der radiologischen Lage Das IMIS ist vor allem für eine schnelle Erfassung der radiologischen Lage in einer Notfallsituation ausgelegt. Um Entscheidungen über Maßnahmen zum Schutz des Menschen und der Umwelt treffen zu können, muss das IMIS drei Informationen umgehend und zuverlässig liefern: Welche Gebiete sind betroffen und wie hoch sind die Kontaminationen? Welche Radionuklide spielen eine Rolle? Wie hoch sind die aktuelle und die zu erwartende Strahlenbelastung der Menschen in betroffenen Gebieten? Organisatorische Gliederung Das IMIS setzt sich aus mehreren Komponenten zusammen, die eng miteinander verflochten und aufeinander abgestimmt sind. In einem radiologischen Notfall wird das IMIS als ein Instrument zur Erfüllung der Aufgaben des Radiologischen Lagezentrums des Bundes ( RLZ ) eingesetzt. Dabei lassen sich drei Ebenen unterscheiden: Messungen der Umweltkontamination und prognostische Dosisabschätzungen , Prüfung, Zusammenführung, Aufbereitung und Darstellung der Ergebnisse, die in Lageberichte als Produkt des RLZ münden, Übermittlung der Lageberichte an die Kopfstelle des RLZ im Bundesumweltministerium ( BMUV ). Geschichte und Einsatzgebiete Geschichte Gamma-Ortsdosisleistung (ODL) Messstrategien im Notfall Labore Geschichte Errichtung des Messsystems: Konsequenz aus Reaktorunfall von Tschornobyl (russ.: Tschernobyl) Beim Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) im Jahr 1986 zeigte sich, dass die Vorbereitungen auf eine großräumige Kontamination der Umwelt nicht ausreichend waren: Die Messungen wurden nicht systematisch durchgeführt und waren nicht aufeinander abgestimmt. Die Dosisabschätzungen sowie der Datenaustausch über Telefax und Fernschreiber waren zeitaufwändig und schwierig. Eine Darstellung der Ergebnisse fand allenfalls in Form von Tabellen statt. Die Erstellung übersichtlicher Graphiken war kompliziert und wurde deshalb so gut wie nicht praktiziert. Dies hat dazu beigetragen, dass die Situation von verschiedenen Stellen unterschiedlich bewertet wurde, was zu erheblichen Verunsicherungen in der Bevölkerung führte. Als Konsequenz aus diesen Erfahrungen wurde noch im Jahr 1986 das Strahlenschutzvorsorgegesetz ( StrVG ) verabschiedet, das bis zum Jahr 2017 die gesetzliche Grundlage für das "Integrierte Mess- und Informationssystems für die Überwachung der Radioaktivität in der Umwelt" ( IMIS ) war. Die betreffenden Bestimmungen des Strahlenschutzvorsorgegesetzes wurden in das aktuelle Strahlenschutzgesetz ( StrlSchG ) übernommen. Gamma-Ortsdosisleistung (ODL) Überwachung der Gamma-Ortsdosisleistung Das BfS betreibt ein bundesweites Messnetz zur großräumigen Ermittlung der äußeren Strahlenbelastung durch die kontinuierliche Messung der Gamma-Ortsdosisleistung ( ODL ). Das ODL-Messnetz besteht aus rund 1.700 ortsfesten, automatisch arbeitenden Messstellen, die flächendeckend über Deutschland verteilt sind. Das ODL -Messnetz besitzt eine wichtige Frühwarnfunktion, um erhöhte radioaktive Kontaminationen in der Luft in Deutschland schnell zu erkennen. Gamma-Ortsdosisleistung beinhaltet natürliche Strahlung Mit dem ODL -Messnetz wird auch die natürliche Strahlung erfasst, der der Mensch ständig ausgesetzt ist. Die gemessene Gamma-Ortsdosisleistung ( ODL ) erfasst die terrestrische Komponente, die durch überall im Boden vorkommende natürliche Radionuklide verursacht wird. Ursache sind Spuren von Kalium, Uran und Thorium, die natürliche Bestandteile von Gesteinen, Böden und Baumaterialien sind. Diese natürliche Strahlung führt im Routinebetrieb zu regelmäßig registrierten Messwerten. Daneben ist der Mensch einer natürlichen Strahlung ausgesetzt, die ihren Ursprung im Weltraum hat und abgeschwächt durch die Atmosphäre die Erdoberfläche erreicht ( Höhenstrahlung , kosmische Strahlung ). Die ODL wird in der Einheit Mikrosievert pro Stunde angegeben. Die natürliche ODL bewegt sich in Deutschland je nach örtlichen Gegebenheiten zwischen 0,05 und 0,18 Mikrosievert pro Stunde. Aktuelle Messwerte online einsehen Auf der BfS -Internetseite ODL -Info zeigt eine Karte die Gamma-Ortsdosisleistung ( ODL ) an den betriebsbereiten Messstellen des ODL -Messnetzes des BfS . Der aktuelle Messwert ist dabei der letzte verfügbare Stundenmittelwert. Die Messwerte werden täglich von Experten auf mögliche Besonderheiten und Fehler durch defekte Sonden geprüft und anschließend an das IMIS übermittelt. Wie auch weitere Daten zur Umweltradioaktivität in Deutschland werden die ODL -Messdaten auch im BfS -Geoportal für die Öffentlichkeit bereitgestellt. Weitere Informationen Überwachung der Gamma-Ortsdosisleistung Messstrategien im Notfall Messung der Strahlenbelastung im Notfall In einem Notfall wird das IMIS in den "Intensivbetrieb" versetzt und es wird ein "Intensivmessprogramm" durchgeführt, um die radiologische Lage schnell und flächendeckend zu erfassen. Während des Durchzugs einer radioaktiven Wolke: Messnetze im Einsatz Wichtigste Hilfsmittel in der Phase während des Durchzugs einer radioaktiven Wolke sind die automatischen Messnetze des Bundesamtes für Strahlenschutz ( BfS ) zur Ermittlung der äußeren Strahlenbelastung ( Ortsdosisleistung , ODL - ) und des Deutschen Wetterdienstes ( DWD ) zur Bestimmung der Konzentrationen der einzelnen Radionuklide in der Luft. Bei einem Unfall werden die Messergebnisse der ODL von zirka 1.700 Standorten im Zehn-Minuten-Rhythmus abgerufen. So können die Ausbreitung einer radioaktiven Schadstoffwolke annähernd in Echtzeit verfolgt und die betroffenen Gebiete sehr schnell eingegrenzt werden. Parallel dazu liefern die 48 Stationen des Luftmessnetzes des Deutschen Wetterdienstes die Konzentrationen radioaktiver Stoffe in der Luft im Zwei-Stunden-Takt. Die Messungen des ODL -Messnetzes und der DWD -Stationen bilden die Grundlage, um die äußere Strahlenbelastung und die durch das Einatmen radioaktiver Stoffe erhaltene Dosis abzuschätzen. Beides wird für die in der Frühphase relevanten Entscheidungen über Maßnahmen zum Schutz der Bevölkerung bewertet (Katastrophenschutzmaßnahmen bezüglich des Verbleibens im Haus, der Einnahme von Jodtabletten und der Evakuierung). Nach Durchzug einer radioaktiven Wolke: Ablagerung am Boden Nach dem Durchzug der Wolke werden Übersichtskarten erstellt, die die Kontamination der Umwelt darstellen. Diese Übersichtskarten sind dazu geeignet, die Maßnahmen zum Schutz der Bevölkerung und die Fortsetzung der Radioaktivitätsmessungen zu optimieren. Zur Erstellung der Übersichtskarten dienen vor allem Messungen der ODL und der In-situ-Gammaspektrometrie , mit denen das Ausmaß der Radionuklidablagerungen auf dem Boden vor Ort analysiert wird. Für die Erfassung kleinräumiger, inhomogener Ablagerungen stehen mit Hubschraubern und Messfahrzeugen mobile Einheiten zur Verfügung. Messschwerpunkt landwirtschaftliche Produkte Nachdem die radioaktive Wolke aus einer Region abgezogen ist, liegt ein Fokus auf der Untersuchung der potentiellen Kontamination landwirtschaftlicher Produkte. Werden in der Region keine Katastrophenschutzmaßnahmen ergriffen und ist somit die Entnahme von Proben landwirtschaftlicher Produkte erlaubt, richten die Messstellen der Bundesländer den Schwerpunkt ihrer Messungen zunächst auf die repräsentativen Umweltmedien Blattgemüse, Milch und Gras und anschließend auf erntereife Produkte. Messungen werden in den Gebieten verdichtet, in denen die bereits vorliegenden Messwerte erhöhte Aktivitäten anzeigen und die Überschreitung der EU -Höchstwerte zu befürchten ist. Das Intensivmessprogramm geht situationsabhängig und schrittweise wieder in das Routinemessprogramm über. Intensivierte Messungen werden in dieser Phase weiter in Bereichen durchgeführt, in denen (auch zeitverzögert) noch erhöhte Aktivitätskonzentrationen auftreten können, wie zum Beispiel in der Milch bei einer Winterfütterung mit kontaminiertem Heu. Labore Messlabore des Bundes und der Länder In das IMIS fließen Daten aus einer Vielzahl von Laboren aus Bund und Ländern ein. Messlabore des BfS Das Bundesamt für Strahlenschutz ( BfS ) ist mit hochspezialisierten Laboren in der Lage, Radionuklide in praktisch allen Medien wie etwa Wasser, Boden, Luft und Lebensmitteln zu bestimmen. Das Aufgabenspektrum reicht von der Emissionsüberwachung von Kernkraftwerken über die Überwachung radioaktiver Stoffe in der Umwelt bis hin zur Spurenanalyse radioaktiver Stoffe in der Atmosphäre zur Überwachung des Kernwaffenteststoppabkommens . Weitere Messlabore des Bundes Weitere Bundeseinrichtungen, deren Labormessungen in das IMIS einfließen bzw. die Messwerte der Länderlabore prüfen, sind der Deutsche Wetterdienst ( DWD ) die Bundesanstalt für Gewässerkunde ( BfG ) das Bundesamt für Seeschifffahrt und Hydrographie ( BSH ) das Max-Rubner-Institut ( MRI ) und das Johann Heinrich von Thünen-Institut . Messlabore der Länder Etwa 40 spezialisierte Labore der Länder bestimmen die Radioaktivitätskonzentration verschiedener Umweltmedien, beispielsweise Trinkwasser oder Lebens- und Futtermittel. Dabei werden einheitliche Probeentnahme- und Messverfahren angewendet. Im Routinebetrieb werden im Jahr rund 10.000 Proben gemessen. Daten sind öffentlich Die von den Laboren für das IMIS ermittelten Daten sind im Geoportal des BfS öffentlich zugänglich. Weitere Informationen Labore des BfS zur Analyse und Messung radioaktiver Stoffe Spurenanalyse im BfS Allgemeine Umweltüberwachung ( BMUV ) Emissionsüberwachung von Kernkraftwerken Überwachung radioaktiver Stoffe in der Umwelt Information und Dokumentation: Austausch von Informationen über IMIS Alle Mess- und Prognoseergebnisse aus dem Integrierten Mess- und Informationssystem ( IMIS ) werden in der Zentralstelle des Bundes ( ZdB ) beim Bundesamt für Strahlenschutz ( BfS ) gesammelt, ausgewertet und in Form von Tabellen, Grafiken und Karten dargestellt. Fachbehörden des Bundes, die sogenannten Leitstellen, prüfen die Daten und Auswertungsergebnisse auf Plausibilität. Das IMIS vernetzt rund 70 Institutionen (Bundesbehörden, Landesministerien und -behörden, Landesmessstellen etc. ) mit mehreren hundert geschulten IMIS -Nutzer*innen, die spezielle Webanwendungen für die Arbeit mit den zentralen IMIS -Komponenten verwenden. Für ein schnelles und angemessenes Handeln ist es notwendig, die Daten und Informationen sehr schnell und zeitgleich allen Entscheidungsträgern in Bund- und Ländern zur Verfügung zu stellen. Dazu wurde die " Elektronische Lagedarstellung " ( ELAN ) entwickelt. Elektronische Lagedarstellung ( ELAN ) In ELAN werden alle für die Beurteilung eines Ereignisfalls, z. B. ein Zwischenfall in einem Kernkraftwerk, relevanten Informationen und Ergebnisse aus dem IMIS bereitgestellt. So ist gewährleistet, dass alle am Management einer Unfallsituation beteiligten Stellen schnell über dieselben Informationen verfügen und handlungsfähig sind. Internationaler Informationsaustausch Im internationalen Maßstab erfolgt ein bilateraler Informations- und Datenaustausch mit der Schweiz, Frankreich den Niederlanden und Österreich ebenfalls über IMIS . Übergreifend werden über die Datenaustauschplattformen EURDEP der EU mit den europäischen Staaten und IRMIS der IAEA mit weltweiten Partnern Informationen über die Radioaktivität in der Umwelt und die Strahlenbelastung in Folge von nuklearen Notfällen geteilt. Berichte Umweltradioaktivität und Strahlenbelastung Das BfS stellt die in der Bundesrepublik Deutschland gemessenen und erhobenen Daten zur Umweltradioaktivität jährlich zusammen und berichtet hierzu mit verschiedenen Themenschwerpunkten. Jedes Jahr werden die Ergebnisse in dem Bericht "Umweltradioaktivität und Strahlenbelastung" zusammengefasst. Stand: 10.09.2024

Natürliche Strahlung in Deutschland

Natürliche Strahlung in Deutschland Die gesamte natürliche Strahlenexposition eines Menschen in Deutschland oder genauer die effektive Dosis beträgt durchschnittlich 2,1 Millisievert im Jahr. Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Der Mensch lebt seit jeher auf Grund von natürlichen Strahlenquellen in einer strahlenden Umwelt. Die dadurch vorhandene natürliche Strahlenexposition führt für einen Menschen in Deutschland zu einer jährlichen effektiven Dosis von durchschnittlich 2,1 Millisievert . Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Aufnahme radioaktiver Stoffe durch Atemluft und Nahrung Die natürliche Strahlenexposition setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche radioaktive Stoffe in den Körper auf: Die Inhalation des radioaktiven Gases Radon mit seinen Folgeprodukten führt pro Jahr zu einer effektiven Dosis von 1,1 Millisievert (Mittelwert, bezogen auf eine einzelne Person). Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und des Urans sowie Kalium-40 und Kohlenstoff-14 aufgenommen; dadurch kommen jährlich circa 0,3 Millisievert (Mittelwert, bezogen auf eine einzelne Person) hinzu. Äußere Strahlenexposition durch kosmische und terrestrische Strahlung Die äußere Strahlenexposition beträgt etwa ein Drittel der gesamten natürlichen Strahlenbelastung - woraus eine Dosis von rund 0,7 Millisievert im Jahr (Mittelwert, bezogen auf eine einzelne Person) resultiert. Kosmische Strahlung Die äußere Strahlenexposition beinhaltet etwa zur Hälfte die kosmische Strahlung . Diese gelangt aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen. Auf ihrem Weg durch die Lufthülle wird durch Kernreaktionen mit den Atomkernen der Luftmoleküle die kosmische Strahlung zur Erdoberfläche hin zum großen Teil absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Terrestrische Strahlung Zur äußeren Strahlenexposition zählt auch die terrestrische Strahlung . Ihre Ursache sind natürliche radioaktive Stoffe , die in den Böden und Gesteinsschichten der Erdkruste vorhanden sind - in regional unterschiedlichen Konzentrationen. Steine und Erden sind wiederum wichtige Rohstoffe für mineralische Baumaterialien . Die darin enthaltenen Radionuklide gehen in die Baustoffe, wie zum Beispiel Ziegel und Beton, über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt etwa 0,4 Millisievert (Mittelwert, bezogen auf eine einzelne Person), davon entfallen auf den Aufenthalt im Freien circa 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Medizinische und technische Anwendungen Neben der natürlichen Radioaktivität wirkt auf den Menschen auch Strahlung aus medizinischen und technischen Anwendungen, vor allem aus der Röntgendiagnostik. Die daraus resultierende Strahlenexposition beträgt in Deutschland circa 1,5 Millisievert pro Jahr (Mittelwert, bezogen auf eine einzelne Person). Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 01.08.2024

Wo kommt Radioaktivität in der Umwelt vor?

Wo kommt Radioaktivität in der Umwelt vor? Radionuklide sind in der Umwelt überall anzutreffen. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Radionuklide sind in der Umwelt überall anzutreffen Bei vielen Menschen erzeugt der Begriff " Radioaktivität " Unbehagen. Die von radioaktiven Stoffen ausgesandte ionisierende Strahlung wird häufig als bedrohlich empfunden - unabhängig davon, wie stark sie ist und woher sie stammt. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Wirken ionisierende Strahlen auf einen Menschen ein, so sprechen wir von einer Strahlenexposition – umgangssprachlich auch Strahlenbelastung genannt. Natürliche Strahlenbelastung Die natürliche Strahlenbelastung setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Zwei Drittel der gesamten natürlichen Strahlenexposition entfallen auf die innere Komponente, ein Drittel auf die äußere. Innere Strahlenbelastung Äußere Strahlenbelastung Innere Strahlenbelastung Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche Radionuklide in den Körper auf. Darüber hinaus können Radionuklide über offene Wunden in den Körper gelangen. Aufnahme über den Atem Der Großteil der natürlichen Strahlenbelastung geht auf das Einatmen des radioaktiven Gases Radon mit seinen Folgeprodukten zurück. Durch Radon sind wir im Durchschnitt pro Jahr einer Strahlenbelastung von 1,1 Millisievert ausgesetzt. Weitere Informationen finden Sie unter Radon. Aufnahme über die Nahrung Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und Urans sowie das Kalium-40 aufgenommen; dadurch kommen im Mittel jährlich 0,3 Millisievert hinzu. Weitere Informationen finden Sie unter Radioaktivität in Lebensmitteln. Äußere Strahlenbelastung Die äußere Strahlenbelastung beträgt rund 0,7 Millisievert im Jahr. Kosmische Strahlung Ein erheblicher Teil der ionisierenden Strahlung , die auf den Menschen einwirkt, stammt aus der kosmischen Strahlung . Diese gelangt von der Sonne und aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen und aus Gammastrahlung . Auf ihrem Weg durch die Lufthülle wird die kosmische Strahlung teilweise absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Flugzeuge kann man gegen die kosmische Strahlung nicht abschirmen. Daher ist der Mensch während eines Fluges dieser Strahlung ausgesetzt. Weitere Informationen finden Sie unter Strahlenexposition von Flugpassagieren sowie unter Überwachung des fliegenden Personals . Terrestrische Strahlung Zur äußeren Strahlenexposition zählt des Weiteren die terrestrische Strahlung . Ihre Ursache sind natürlich vorkommende radioaktive Materialien, die regional sehr unterschiedlich in Böden und Gesteinsschichten der Erdkruste vorhanden sind. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt im Bundesgebiet im Mittel etwa 0,4 Millisievert , davon entfallen auf den Aufenthalt im Freien zirka 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Natürlich vorkommende Radionuklide in Baumaterialien Steine und Erden sind wichtige Rohstoffe für mineralische Baumaterialien wie zum Beispiel Ziegel und Beton. Die in den Steinen enthaltenen Radionuklide gehen in die Baustoffe über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Weitere Informationen finden Sie unter Baumaterialien. Natürliche Strahlenbelastung in Deutschland Die gesamte natürliche Strahlenbelastung in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr ( effektive Dosis ). Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von etwa einem bis zu zehn Millisievert . Belastung aus künstlichen radioaktiven Quellen Bei künstlichen Radionukliden in der Umwelt denkt man an Reaktorkatastrophen, wie sie in Tschornobyl ( russ. : Tschernobyl) oder Fukushima geschehen sind. Aber auch bei Kernwaffenversuchen wurden künstliche Radionuklide freigesetzt. Auch im Normalbetrieb entweichen in geringem Maße künstliche Radionuklide aus kerntechnischen Anlagen. Dies wird in verschiedenen Messnetzen streng überwacht. Weitere Informationen finden Sie unter IMIS . Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 10.04.2024

Radioaktivität in der Umwelt Natürliche Strahlenexposition Bergbaubedingte Radioaktivität Strahlenexposition durch künstliche radioaktive Stoffe (Zivilisatorische Strahlenexposition)

Die natürliche Strahlenexposition des Menschen resultiert aus der Summe der Wirkungen der kosmischen Strahlung, der Strahlung der natürlichen Radionuklide in der Umwelt des Menschen und sowie der Strahlung der natürlichen Radionuklide, die sich im Körper jedes Menschen befinden. Im Jahr 2004 betrug in Deutschland die effektive Dosis, die durch die kosmische Strahlung hervorgerufen wird, im Mittel 0,3 mSv/a (Millisievert/Jahr). Die Dosis durch kosmische Strahlung ist abhängig von der geographischen Breite sowie der Höhe über dem Meeresspiegel. Die mittlere effektive Dosis der Bevölkerung durch den terrestrischen Anteil an der natürlichen Strahlenexposition beträgt etwa 0,4 mSv/a. Die Intensität der Strahlung kann auf Grund von geologisch-mineralogischen Verhältnissen von Ort zu Ort verschieden sein. Das natürlich vorkommende radioaktive Edelgas Radon, das aus dem Untergrund in die Häuser eindringen kann, ist für eine Dosis von 1,1 mSv/a verantwortlich. Der menschliche Organismus nimmt während des gesamten Lebens natürliche radioaktive Stoffe durch die Nahrung, die Atmung und über die Haut auf. Das Aktivitätsinventar für einen Menschen wird mit ca. 7.500 Bq angegeben. Daraus ergibt sich einen Strahlendosis von etwa 0,3 mSv/a. In der Summe beträgt die mittlere effektive Jahresdosis eines Menschen durch natürliche Strahlung ca. 2,1 mSv. Insgesamt ergibt sich durch die natürliche und zivilisatorische Strahlenexposition eine mittlere effektive Jahresdosis für die Bevölkerung von ca. 4,0 mSv. Dieser Wert ist gegenüber den Vorjahren unverändert. Mit dem Anteil der zusätzlichen zivilisatorischen Strahlenexposition zur ohnehin natürlich vorhandenen in dieser Größenordnung geht keine gesundheitliche Gefährdung einher. Nähere Angaben hierzu finden sich in den jährlich veröffentlichten Berichten der Bundesregierung über Umweltradioaktivität und Strahlenschutz, herausgegeben vom Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz . Untersuchungen zu bergbaubedingter Umweltradioaktivität gab es in Sachsen-Anhalt in den Regionen Mansfelder Land und Sangerhäuser Mulde. Bund und Land untersuchten Flächen au- ßerhalb des ehemaligen Mansfeld-Kombinates, die durch Kupfer- gewinnung bergbaulich beeinflusst waren. Rund drei Millionen Euro stellte der Bund dafür zur Verfügung. Die Resultate der Untersuchungen befinden sich in der Daten- bank ALASKA, deren Abschlussversion seit 2001 vorliegt. Die Datenbank enthält Eintragungen über 2970 bergbauliche Objekte aus den genannten Gebieten. Die Ergebnisse zeigen, dass der Kupferbergbau in Sachsen-An- halt zu keiner großflächigen radioaktiven Belastung der Umwelt geführt hat. Über 90 Prozent der untersuchten bergbaulichen Objekte weisen Radioaktivitätswerte im natürlichen Bereich auf. Sofortmaßnahmen waren aber nur in einem Fall, der Aschehalde am Maschinendenkmal in Hettstedt, erforderlich. Diese Halde wurde 1994 auf Veranlassung des Umweltministeriums einge- zäunt. In Mansfeld erfolgte die Sanierung einer Kupferschlacke- halde. Die Arbeiten wurden im Frühjahr 2005 abgeschlossen. Von den verbliebenen radioaktiv kontaminierten Flächen konnte eine Vielzahl aufgrund geringer Exposition durch bereits vorhan- dene Abdeckungen oder geringe Größe als Quelle von Gefährdun- gen für die Bevölkerung zunächst ausgeschlossen werden. Auf den Betriebsflächen des ehemaligen Mansfeld Kombinats, die in einem gesonderten Programm untersucht wurden, führten Sanierungen zu einer erheblichen Reduzierung der radioaktiven Kontaminationen. Betriebsflächen mit erhöhter Radioaktivität sind nicht frei zugänglich. Radioaktive Nuklide können als umschlossene bzw. in offener Form eingesetzt werden. Bei den umschlossenen Strahlenquellen handelt es sich um Nuklide, die in eine dichte, meist metallische Kapselung eingeschlossen werden. Anwendung finden umschlossene Strahlenquellen u. a. in der Werkstoffprüfung, bei Großbestrahlungsanlagen und in der Medizin. Bei offenen radioaktiven Stoffen liegt das Nuklid meist in Form einer chemischen Verbindung (z. B. Salz, Oxid, organische Verbindung) vor und kommt in fester, flüssiger und gasförmiger Form unmittelbar zur Anwendung. Offene radioaktive Stoffe werden u. a. in der Nuklearmedizin, als Radiopharmaka und in der Forschung (z. B. Biochemie) verwendet. Für Anwender von radioaktiven Stoffen bzw. Betreiber von Anlagen, die radioaktive Stoffe enthalten, besteht die Verpflichtung der geordneten Entsorgung des radioaktiven Materials und der kontaminierten Gegenstände. Unvermeidbare Ableitungen radioaktiver Stoffe in die Umwelt, z. B. bei der nuklearmedizinischen Anwendung von Radioisotopen oder bei kerntechnischen Anlagen, unterliegen den in der Strahlenschutzverordnung festgeschriebenen Bestimmungen und Grenzwerten. Kontrollen erfolgen durch die zuständigen staatlichen Aufsichtsbehörden. Aus Gründen des Strahlenschutzes verwenden die nuklearmedizinischen Einrichtungen heute fast ausschließlich kurzlebige Isotope, wie Iod-131 und Technetium-99m. 2004 betrug die mittlere zivilisatorische Strahlenexposition der Bevölkerung der Bundesrepublik 1,9 mSv/a, in der Hauptsache durch medizinische An­wendung von Radionukliden und die Anwendung von Röntgenstrahlen bedingt. Andere Faktoren, wie der Fallout von Kernwaffenversuchen, die Folgen des Reaktorunfalls von Tschernobyl, die Emis­sionen kerntechnischer Anlagen, Technik und Forschung so­wie beruflich bedingte Strahlenexpositionen tragen nur un­wesentlich zur Strahlenbelastung des Menschen bei.

Wer benötigt eine SSR -Nummer?

Wer benötigt eine SSR -Nummer? Alle Personen, für die seit Inkrafttreten des Strahlenschutzgesetzes am 31.12.2018 Eintragungen im Strahlenschutzregister vorgenommen werden (beruflich exponierte Personen, Inhaber von Strahlenpässen, freiwillig strahlenschutzüberwachte Personen) benötigen eine SSR -Nummer. Im Einzelnen betrifft dies folgende Personen: Personen, die sich in einem Überwachungsbereich aufhalten (gilt nicht für Patienten), außer wenn sichergestellt ist, dass im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert nicht erreicht wird. Die zuständige Behörde kann die Ermittlung der Dosis verlangen. Personen, die sich in einem Kontrollbereich aufhalten (gilt nicht für Patienten), außer wenn sichergestellt ist, dass im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert nicht erreicht wird und die zuständige Behörde dem Verzicht auf eine Dosisermittlung zugestimmt hat. Personen, die bei der Ausübung einer Tätigkeit, die nicht mit dem Aufenthalt in einem Strahlenschutzbereich verbunden ist, eine effektive Dosis von mehr als 1 Millisievert , eine höhere Organ-Äquivalentdosis als 15 Millisievert für die Augenlinse oder eine lokale Hautdosis von mehr als 50 Millisievert im Kalenderjahr erhalten können ( z.B. auch Tätigkeiten im Zusammenhang mit der Sanierung radioaktiver Altlasten, Tätigkeiten mit natürlich vorkommenden radioaktiven Stoffen). Personen, die als fliegendes Personal in der Luft- und Raumfahrt eingesetzt werden, und die im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert durch kosmische Strahlung erhalten können. Personen, die durch eine Radon-222 - Exposition am Arbeitsplatz eine effektive Dosis von mehr als 6 Millisievert im Kalenderjahr erhalten können. Personen, die im Rahmen eines Notfalleinsatzes einer Strahlenexposition ausgesetzt waren und die dabei eine effektive Dosis von mehr als 1 Millisievert oder eine Organ- Äquivalentdosis für die Augenlinse von mehr als 15 Millisievert oder eine lokale Hautdosis von mehr als 50 Millisievert erhalten haben. Personen, die zur Ausübung ihrer Tätigkeit einen Strahlenpass besitzen oder benötigen. Personen, die sich freiwillig dosimetrisch überwachen lassen möchten, können die Ergebnisse auch ins Strahlenschutzregister eintragen lassen. Hierzu wird dann ebenfalls eine SSR -Nummer benötigt. Auch die Eintragung von geringen bis sehr geringen Expositionswerten kann sinnvoll sein, z.B. wenn für den Beschäftigten oder den Strahlenschutzverantwortlichen ein dauerhafter Nachweis über den Ausschluss einer relevanten Strahlenexposition von Interesse ist.

Sachliche Grundlagen der Umweltradioaktivität

Radioaktive Stoffe treten in uns selbst und in unserer Umgebung alltäglich auf, wobei die in unserer Umwelt vorhandenen radioaktiven Stoffe sowohl natürlichen als auch künstlichen Ursprung haben. Natürliche Radioaktivität ist allgegenwärtig und unvermeidbar. Zu ihr tragen ohne menschliches Zutun kosmische Strahlung und terrestrische Strahlung bei. Radioaktive Stoffe dringen aus der Erde und werden in der Atmosphäre von der Sonnenstrahlung gebildet. Sie sind in der Luft, die wir atmen, und sogar unser Körper enthält radioaktive Stoffe. Die gesamte Entwicklung des Lebens einschließlich der menschlichen Evolution erfolgte unter Einwirkung der natürlichen Strahlung. Einige radioaktive Elemente in der Erdkruste, unter anderen Kalium, sind seit der Erdentstehung vorhanden und weit verbreitet. So ist Kalium z.B. für Menschen und Tiere lebensnotwendig. Es gelangt über die Nahrungsaufnahme von Kartoffeln, Nüssen oder Bananen in den menschlichen Organismus. Dort sorgt es unter anderem für einen regelmäßigen Herzschlag. Ferner benötigen auch Pflanzen Kalium für ihre Entwicklung. Die natürliche Radioaktivität kann je nach geologischen Gegebenheiten stark schwanken. Ein Einfluss der örtlichen Unterschiede auf den Gesundheitszustand der Bevölkerung konnte bisher nicht nachgewiesen werden. Zur Belastung durch natürliche Radioaktivität, die ohnehin in der Umwelt vorhanden ist, kommt die künstliche, die vom Menschen verursachte Strahlenbelastung hinzu. Radioaktive Stoffe sind in erheblicher Menge bei den über 600 oberirdischen Tests von Kernwaffen in den Jahren zwischen 1945 und 1980 freigesetzt und verbreitet worden (Fallout). Abhängig von Umfang und Form der Freisetzung haben sich die radioaktiven Spaltprodukte der Kernexplosionen verteilt und sind selbst in sonst vom Menschen noch weitgehend unbeeinflussten Gebieten deutlich nachweisbar. Weitere Mengen radioaktiver Stoffe wurden weltweit durch schwere Unfälle in kerntechnischen Einrichtungen verbreitet. Der vor 2011 bekannteste fand 1986 im Kernkraftwerk Tschernobyl in der Ukraine statt. Wie die Schwere eines Störfalles oder Unfalles bestimmt wird, erfahren Sie auf der Internetseite des Bundesamtes für Strahlenschutz . Ebenso wie jede Industrieanlage, jedes Kraftfahrzeug, Flugzeug etc. gibt ein Kernkraftwerk, selbst im Normalbetrieb Schadstoffe, hier radioaktive Substanzen, an die Umgebung ab. Zu fragen ist daher, in welchem Maße diese in den gemessenen Mengen für den Menschen und die Natur gefährlich bzw. schädlich sind. Um dies zu ermitteln, betrachtet man die von einer bestimmten Substanz ausgehende stofftypische Gefährdung (Toxizität), die vorliegende Konzentration und die Aufenthaltsdauer des betroffenen Organismus am Einwirkungsort. Wie gefährlich die einzelnen radioaktiven Stoffe sind, hat man durch Tests und Experimente – überwiegend an Tieren – bestimmt. Die auf diese Weise erzielten Ergebnisse werden mittels Modellen und unter Anwendung von Sicherheitsfaktoren auf den Menschen extrapoliert und ermöglichen eine Aussage, welche Dosis einer Substanz ohne erkennbare schädliche Wirkung bleibt. Mit diesen Erkenntnissen wäre es möglich zu bestimmen, auf welchen Wert die Emissionen für eine bestimmte Komponente begrenzt werden müssen, damit der Schutz des Menschen vor unmittelbaren Schäden gewährleistet ist. Radioaktive Strahlung kann aber Schädigungen hervorrufen, die nicht unmittelbar erkannt werden können: Folgen wie z.B. eine Krebserkrankung treten eventuell erst lange Zeit nach der Bestrahlung und nur mit einer gewissen Wahrscheinlichkeit auf. Bei der Festlegung von Grenzwerten für die Abgabe radioaktiver Stoffe an die Umwelt hat man sich deswegen daran orientiert, wie hoch die Schwankungen der natürlichen Umweltradioaktivität sind. Da diese Schwankungen keinen nachweisbaren Einfluss auf den Gesundheitszustand der Bevölkerung haben, darf vermutet werden, dass Abgaben mit noch geringerer Wirkung ebenfalls keine nachweisbaren Schädigungen verursachen. Die rechts stehende Abbildung soll der Veranschaulichung dienen. Die Flächen zeigen die Belastung durch die Abgabe radioaktiver Stoffe in die Umwelt der Neutronenquelle BER II in Berlin-Wannsee im Vergleich zur theoretischen Belastung bei Ausschöpfung der genehmigten Abgabewerte oder des rechtlich höchstens zulässigen Genehmigungswertes und zur Belastung aus natürlichen Quellen. Die aus medizinischen und Forschungsanwendungen stammenden oder bei dem bestimmungsgemäßen Betrieb von Kernanlagen in die Umwelt abgegebenen Mengen radioaktiver Stoffe liegen deutlich unterhalb der festgelegten Grenzwerte und sind entsprechend zu vernachlässigen. 0,01 mSv entspricht der Belastung durch eine Röntgenaufnahme des Brustkorbs oder einen Transatlantikflug.

Experten informieren über Radon

Experten informieren über Radon Der Ausstellungsstand des Landesamtes aus dem Bereich des Strahlenschutzes, der zum Thema Radon informiert nimmt zwar nur eine recht kleine Nische im 1.000 Quadratmeterzelt der Sonderschau "Energie Sparen" auf der Rheinland-Pfalz-Ausstellung ein, dafür war aber bereits in den ersten Tagen das Besucherinteresse umso größer. Interessierte Gäste wie die "Häuslebauer", aber auch Handwerker selbst fragten nach Maßnahmen des radongeschützten Bauens, aber auch nach Sanierungsmaßnahmen bei bestehenden Gebäuden; natürlich ging es auch um regionale Radonsituationen als Planungsgrundlage für Neubauten. Bereitwillig informierten die Experten des Landesamtes über gesundheitliche Risiken, die mit Radon in Verbindung stehen. Dazu mussten dann schon einmal fachspezifisch physikalische und radiologische Zusammenhänge in Bezug auf das Radon erläutert werden: „Radioaktive Stoffe und ionisierende Strahlung sind ein allgegenwärtiger Bestandteil unserer natürlichen Umgebung“, macht Karl-Ernst Schardt einem besorgten Bürger klar. „Es existieren zahlreiche natürliche Strahlungsquellen, die sich unabhängig vom Menschen gebildet haben und weiter bestehen.“ Böden und Gesteine der Erdkruste enthielten natürliche Radionuklide, die in Wasser, Pflanzen und Tiere und damit auch in die Nahrung des Menschen gelangen könnten, so Schardt weiter. Frau Kareen Sans weist eine Besucherin währenddessen auf Spuren von Uran und Thorium im Boden hin, die im Rahmen ihrer natürlichen Zerfallsreihen radioaktive Isotope des Edelgases Radon erzeugen und auf diese Weise zum deutlichen Anstieg der natürlichen Strahlenbelastung führen könnten. Auch die auf der Erde ankommende kosmische Strahlung würden direkt zur natürlichen Strahlenbelastung beitragen. Zu den wechselnden Schwerpunkten des Landesamtes in der jüngeren Vergangenheit aus dem Bereich des Strahlenschutzes gehören Gutachten und Messungen bei Altlastenprojekten, zum Rückbau des Kernkraftwerks Mülheim-Kärlich, Gutachten zur Entsorgung radioaktiver Abfälle, Radon in Wasserwerken sowie die Messung und Bergung von Funden vagabundierender radioaktiver Materialien. Auch hierzu stehen die Mitarbeiter/innen des Landesamtes Rede und Antwort. Noch bis zum Sonntag, 20. März informieren unsere Experten im Ausstellungszelt „Energie Sparen“, wo das Landesamt zusätzlich auch noch mit seiner monatlichen Initiative „Umweltschutz im Alltag“ bei der Energieagentur Rheinland-Pfalz vertreten ist. Die Monatsflyer zu allerlei energiebewussten Themen sind dort am Stand erhältlich. Weitere Informationen zum Thema Radon erhalten Sie unter auf der LfU-Webseite Radon-Informationsstelle .

Was ist eigentlich Radioaktivität?

Was ist eigentlich Radioaktivität? Textfassung des Videos " Was ist eigentlich Radioaktivität? " Man sieht sie nicht, und man spürt sie nicht: Strahlung . Dennoch ist ein Mensch immer einer Strahlenbelastung ausgesetzt. Abschirmen ist sinnvoll, in dieser Form aber wirkungslos. Natürliche radioaktive Stoffe in Böden und Gesteinen geben Strahlung ab. Und sie kommt nicht nur aus der Erde, sondern auch vom Himmel. Je höher, desto stärker ist die kosmische Strahlung . Bei Langstreckenflügen und mehreren Kilometern Höhe ist sie bereits relevant. Doch was ist überhaupt Radioaktivität und Strahlung ? Kerne bestimmter Atomsorten, sogenannte "Radionuklide", sind instabil. Sie wandeln sich um und zerfallen. Dabei können Teilchenstrahlung und elektromagnetische Strahlung freigesetzt werden. Man unterscheidet zwischen Alpha-, Beta- und Gammastrahlung . Alphateilchen kommen nicht weit; sie werden schon durch wenige Zentimeter Luft absorbiert. Die menschliche Haut können sie nicht durchdringen. Betateilchen durchdringen die Luft bis zu einigen Metern, und auch die menschliche Haut kann sie nicht aufhalten. Sie können wenige Millimeter bis Zentimeter in den Menschen eindringen. Gammastrahlung ist - ähnlich dem Licht - eine elektromagnetische Strahlung und besteht aus Photonen. Sie durchdringt sehr leicht verschiedenste Materie. Selbst die beste Kondition kann da nicht helfen, aber zum Beispiel Blei: Das schirmt die Strahlung ab. Doch warum ist die von radioaktiven Stoffen ausgehende Strahlung überhaupt gefährlich? Alle Arten dieser Strahlung wirken auf die menschlichen Zellen und können gesunde Zellen zu Krebszellen verändern oder das Erbgut schädigen. Mit der Entfernung von der radioaktiven Quelle nimmt die Strahlung ab und wird durch dazwischen liegende Stoffe teilweise abgeschirmt. Anders bei der Kontamination , einer Verschmutzung mit Radionukliden: Wenn sie sich auf der Oberfläche oder im Inneren eines Körpers festgesetzt haben, strahlen sie dort weiter. So können Radionuklide über die Nahrungskette in den Körper gelangen. In einigen Pilz- und Gemüsesorten können sich sogar radioaktive Stoffe anreichern. Auch Gebäude bieten keinen Schutz, wenn sie unsachgerecht gebaut und nicht dicht sind. Dann kann das radioaktive Gas Radon aus dem Boden eindringen und sich bei schlechter Lüftung in der Raumluft sanieren. In bestimmten radonreichen Regionen erhöht sich dadurch das Lungenkrebsrisiko. Im Freien jedoch verteilt sich das Gas, und man kann sorglos atmen. Jede noch so geringe Strahlenbelastung ist potenziell gesundheitsschädigend. Daher ist es wichtig, die Gefährdungen durch Strahlung und Radioaktivität zu kennen und Belastungen so weit wie möglich zu reduzieren. Stand: 05.05.2015

Grenzwerte

Grenzwerte Textfassung des Videos " Grenzwerte " Auch geringe Belastungen unterhalb der festgelegten Grenzwerte sind nicht ungefährlich und sie erhöhen die bereits vorhandene Gefährdung durch die natürliche Strahlenbelastung. Diese liegt im Durchschnitt bei 2,1 Millisievert pro Jahr. In bestimmten Gebieten, wie dem Nordrand der Alpen und dem Erzgebirge, ist sie durch Radon besonders hoch. Das aus dem Erdboden austretende radioaktive Gas Radon gelangt durch schlecht abgedichtete Gebäudekeller in Häuser, kann sich in der Atemluft anreichern und ist statistisch für 1.900 Lungenkrebstote pro Jahr in Deutschland verantwortlich. Auch medizinische Untersuchungen tragen heute zu einem erheblichen Teil zur Strahlenbelastung der Bevölkerung bei. Die durchschnittliche Strahlenbelastung pro Einwohner erhöht sich dadurch um 2,0 Millisievert auf 4,1 Millisievert pro Jahr. Einzelne Untersuchungen, wie z.B. eine Computertomographie des Bauchraumes, verursachen eine Strahlendosis von bis zu 25 Millisievert und können daher langfristig Auslöser für eine Krebserkrankung sein. Deswegen muss bei allen Röntgenuntersuchungen der medizinische Nutzen gegen ein zusätzliches Gesundheitsrisiko abgewogen werden. Weil im Strahlenschutz davon ausgegangen wird, dass jede Strahlendosis gesundheitsgefährdend ist, treffen auch Grenzwerte lediglich eine Aussage darüber, welches Risiko die Gesellschaft für einen bestimmten Nutzen in Kauf nimmt. So ist der Grenzwert für die Belastung der Bevölkerung durch kerntechnische Anlagen gesetzlich auf 1,0 Millisievert pro Jahr festgelegt. Für strahlenexponierte Personen wie Mitarbeiter kerntechnischer Anlagen gelten 20,0 Millisievert pro Jahr als gesetzlicher Grenzwert. Sie tragen somit ein höheres berufliches Gesundheitsrisiko. Auch Flugpersonal gehört aufgrund der kosmischen Strahlung zu den strahlenexponierten Berufsgruppen. Welche Strahlenbelastungen sind bei der Rückholung der radioaktiven Abfälle aus der Schachtanlage Asse II zu erwarten? Studien haben für alle notwendigen Arbeitsvorgänge die möglichen Belastungen der Mitarbeiter errechnet. Rechnet man alle diese Arbeitschritte und Zeiten zusammen ergibt sich eine sogenannte Kollektivdosis von 889 Millisievert. Diese hohe Gesamtbelastung muss auf viele einzelne Arbeiter und Einsatzzeiten verteilt werden. In besonders kritischen Bereichen sind darum nur sehr kurze individuelle Arbeitseinsätze möglich. Stand: 05.05.2015

Die berufliche Strahlenexposition in Deutschland 2020 : Bericht des Strahlenschutzregisters

In Deutschland unterliegen Personen, die in ihrem Arbeitsumfeld ionisierender Strahlung ausgesetzt sind, in der Regel der beruflichen Strahlenschutzüberwachung. Dies betrifft vor allem Beschäftigte im Bereich der Medizin, der Kerntechnik, der allgemeinen Industrie, der Forschung und Lehre sowie Beschäftigte, die einer erhöhten Exposition durch natürliche Strahlungsquellen (z. B. Radon oder kosmische Strahlung) ausgesetzt sind. Im Rahmen der Strahlenschutzüberwachung werden Daten zur beruflichen Exposition erhoben und im Strahlenschutzregister (SSR) des Bundesamtes für Strahlenschutz (BfS) zentral erfasst und personenbezogen zusammengeführt. Im Jahr 2020 wurden in Deutschland ca. 420.000 Personen strahlenschutzüberwacht. Das SSR des BfS ist das größte zentrale Register für Daten zur beruflichen Strahlenexposition in Europa in Bezug auf die Anzahl an jährlich überwachten Personen. Seit Beginn der Erfassung der beruflichen Exposition durch das SSR im Jahr 1997 ist die Anzahl der strahlenschutzüberwachten Personen bis zum Jahr 2020 kontinuierlich, insgesamt um rund 28 % gestiegen

1 2 3 4 5 6