EU soll Arzneimittel nachträglich bewerten - Internet-Portal zu Tierarzneimitteln für Landwirte und Veterinäre gestartet Das Umweltbundesamt (UBA) empfiehlt dem EU-Gesetzgeber, für bereits zugelassene Tierarzneimittel eine Umweltbewertung vorzuschreiben, wenn zu diesen bisher keine Umweltdaten vorliegen. Insbesondere für Antibiotika ist das wichtig, denn Antibiotika können in Böden und Gewässern die Bildung von resistenten Krankheitserregern fördern. Nötig sind zudem Kriterien für die Zulassung, die das Resistenz-Potential von Antibiotika prüfen. Ergänzend will das UBA ein verpflichtendes und flächendeckendes Monitoring von problematischen Arzneimitteln in Gewässern und Böden einführen. Antibiotikaresistenzen sind vor allem in Krankenhäusern eine Bedrohung für die menschliche Gesundheit, doch das UBA sieht auch zunehmende Antibiotikafunde in der Umwelt mit großer Sorge. Maria Krautzberger, Präsidentin des UBA: „Wir müssen verhindern, dass Antibiotikarückstände in der Umwelt zum Problem werden, weil dies die Entwicklung von Resistenzen fördern könnte.“ Aus der Tierhaltung können über Gülle und Dung sowohl Antibiotika als auch resistente Erreger in Wasser und Boden gelangen und so die natürliche Entstehung von Resistenzen fördern. „Wir müssen daher gemeinsam mit der Tiermedizin und der Landwirtschaft daran arbeiten, den Eintrag von Antibiotika aus der Tierhaltung zu senken.“ Zur „Grünen Woche“ startet das UBA das neue Internetportal „Tierarzneimittel in der Umwelt“. Darin werden vor allem für tierärztliches Fachpersonal und Landwirte praxisnahe Maßnahmen vorgeschlagen, um den Antibiotikaeintrag in die Umwelt zu minimieren. Seit 2014 wird in der EU eine neue Gesetzgebung für die Zulassung von Tierarzneimitteln verhandelt. Der Vorschlag der EU-Kommission geht besonders auf Antibiotika und deren Risiken für die menschliche Gesundheit ein. Für das Umweltbundesamt ist dies die Gelegenheit, die Berücksichtigung von Umweltaspekten im Rahmen des Zulassungsverfahrens zu verbessern. Das UBA weist bereits seit langem auf die fehlende Umweltbewertung für „Altarzneimittel“ hin. So fehlt für rund 50 Prozent der verkehrsfähigen Antibiotika für Nutztiere eine umfassende Umweltbewertung, da es vor 2005 keine EU-weiten Vorgaben für eine solche Bewertung gab. Das UBA fordert daher ein EU-weites „Altarzneimittel¬programm“ zur nachträglichen Umweltbewertung von Tierarzneimitteln. Dies betrifft beispielsweise das häufig verwendete Antibiotikum Sulfadimidin, welches bei Atemwegserkrankungen und Darminfektionen von Schweinen und Hühnern angewendet wird. In Deutschland hat das UBA diesen Wirkstoff bereits im Boden und Grundwasser nachgewiesen. Problematisch ist zudem die Verbreitung von Antibiotika über Gülle und Dung, die als Wirtschaftsdünger verwendet werden. Dadurch gelangen Antibiotika-resistente Keime in die Umwelt. Sie können sich dort vermehren und ihre Resistenzgene auch auf Erreger übertragen, die für den Menschen gefährlich sind. Je häufiger das geschieht, desto mehr resistente Keime können heran wachsen und sich durchsetzen. Da bei Antibiotika-Anwendung eine enge Verbindung zwischen Tiergesundheit, menschlicher Gesundheit und Umwelt besteht, ist ein vorsorgendes, Sektor-übergreifendes Handeln (One-Health-Ansatz) geboten. „Derzeit fehlt uns noch ein flächendeckender Überblick zum Vorkommen von Antibiotika in der Umwelt. Daher brauchen wir für bestimmte Antibiotika und andere problematische Arzneimittelwirkstoffe ein EU-weites und verpflichtendes Monitoring – in Flüssen, Seen, Bächen, im Grundwasser und in landwirtschaftlich genutzten Böden“, sagte UBA-Präsidentin Krautzberger. Auch sei ratsam, Antibiotika-Resistenzen an potentielle Resistenz -„Hot-Spots“ wie in Kläranlagen, Krankenhäusern, großen Tiermastanlagen und in der Nähe von pharmazeutischen Produktionsstätten besser zu untersuchen. Im vergangenen Jahr wurde ein EU-Aktionsplan zur Bekämpfung antimikrobieller Resistenzen veröffentlicht, in dem aber verpflichtende Maßnahmen für die Umwelt bislang fehlen. Aus Sicht des UBA muss die Umwelt in diesem Aktionsplan mehr Gewicht bekommen. Auch Tierarzneimittelnutzer können einen Beitrag leisten, den Antibiotikaeinsatz zu senken. Im Internetportal „Tierarzneimittel in der Umwelt“ unter www.uba.de/tierarzneimittel stellt das UBA in über 20 Artikeln Informationen und Empfehlungen für Landwirte, Tiermediziner und interessierte Verbraucher bereit. Diese wurden gemeinsam mit Tierärztinnen und -ärzten sowie Landwirtinnen und -wirten erarbeitet. Besonderen Raum nimmt die Vorbeugung ein, also krankheitsvermeidende Haltungsbedingungen und Stärkung des Immunsystems. Denn Tierarzneimittel, die nicht erst verabreicht werden müssen, belasten auch nicht die Umwelt. Hintergrund: Die Anwendung von Antibiotika in der Tierhaltung ist in Deutschland seit 2011 um mehr als die Hälfte auf 742 Tonnen (2016) gesunken. Die Menge an Antibiotika aus Wirkstoffklassen, die z. B. auch für die Therapie beim Menschen wichtig sind, bleibt jedoch gleich hoch (BVL, 2017). Der Einsatz in der Tierhaltung hat Folgen, auch für die Umwelt. Mit der Gülle kommen die von Tieren ausgeschiedenen Antibiotikarückstände auf unsere Äcker, wo sie sich im Boden anreichern können. Auch im Grund- und Oberflächenwasser werden vereinzelt Rückstände von Antibiotika nachgewiesen. Diese Rückstände in Gewässern können für einige Wasserorganismen sehr schädlich sein. Zudem können sie die Bildung von Resistenzen in Mikroorganismen fördern, die natürlicherweise in Böden und im Wasser leben. Da darunter auch Mikroorganismen sein könnten, die beim Menschen Krankheiten auslösen, sollte vermieden werden, dass Resistenzen vermehrt in der Umwelt entstehen und sich verbreiten.
Das Projekt "Partner F" wird vom Umweltbundesamt gefördert und von Strube Research GmbH & Co. KG durchgeführt. Das Ziel des Projektes ist die Analyse und Bewertung unterschiedlicher Winterweizenanbausysteme (Ertrag, Resistenz) und Fungizidstrategien, basierend auf bestehenden Daten und Feldexperimenten unter besonderer Berücksichtigung ökonomischer, ökologischer und gesamtgesellschaftlicher Aspekte. Evaluierung bestehender Datenpools für Fungizidversuche an Winterweizen. Vergleich unterschiedlicher Züchtungskonzepte für Winterweizen in Freilandversuchen. Bestimmung von Qualitätsparametern und Rückstandsanalysen für PSM in Winterweizen. Erfassung der Kosten und Darstellung des Nutzens unterschiedlicher Anbausysteme und Fungizidstrategien auf betriebswirtschaftlicher und gesamtgesellschaftlicher Ebene.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von KWS LOCHOW GMBH durchgeführt. Das übergeordnete Ziel von GeneBank2.0 ist es, die Ex-situ-Weizensammlung des IPK in eine aktiv in der Züchtung genutzte Sammlung umzuwandeln, indem ein integrierter Ansatz angewendet wird, der modernste Genomik, Phänomik, Biodiversitätsinformatik und Präzisionszüchtung umfasst. Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Die in den ersten beiden Phasen entwickelten und begonnenen PreBreeding Strategien werden in der dritten Projektphase weitergeführt. Das bezieht sich im Wesentlichen auf die Nutzung wertvoller neuer Allele und Gene für die Merkmale Kornertrag, Antherenextrusion sowie Braunrost-, Gelbrost- und Mehltauresistenz.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von KWS SAAT SE & Co. KGaA durchgeführt. Ziel des Projektes ist die Verbesserung der Resistenz von Mais gegenüber Kolbenfäulen, verursacht durch Fusarium spp., und Turcicum-Blattdürre, verursacht durch den Pilz Setosphaeria turcica. PRIMA kombiniert Methoden der Phytopathologie und der molekularen Züchtung und beinhaltet folgende Arbeitsfelder: i) Entwicklung neuer Methoden für die gezielte Nutzung tropischer genetischer Ressourcen in der Züchtung und Erhöhung der Biodiversität für Resistenz, ii) phytopathologische Studien zur Analyse von Arten- und Rassenspektren von Fusarium spp. und S. turcica und deren klimazonale Relevanz sowie Prüfung der Temperaturabhängigkeit der Resistenzen in Maislinien und iii) Untersuchung der Wirksamkeit und biotechnologische Entwicklung einer neuartigen Resistenzquelle. Die Zusammenführung aller Ansätze wird direkt zu innovativen Methoden für eine nachhaltige Resistenzzüchtung gegen pilzliche Erreger in Deutschland und auch international führen. Ergebnisse werden von den akademischen Partnern publiziert. Der Zuchtfortschritt wird durch den Wirtschaftspartner KWS den Landwirten innerhalb weniger Jahre nach Projektende zur Verfügung gestellt werden.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Das übergeordnete Ziel von GeneBank2.0 ist es, die Ex-situ-Weizensammlung des IPK in eine aktiv in der Züchtung genutzte Sammlung umzuwandeln, indem ein integrierter Ansatz angewendet wird, der modernste Genomik, Phänomik, Biodiversitätsinformatik und Präzisionszüchtung umfasst. Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Die in den ersten beiden Phasen entwickelten und begonnenen PreBreeding Strategien werden in der dritten Projektphase weitergeführt. Das bezieht sich im Wesentlichen auf die Nutzung wertvoller neuer Allele und Gene für die Merkmale Kornertrag, Antherenextrusion sowie Braunrost-, Gelbrost- und Mehltauresistenz.
Das Projekt "Partner B" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landwirtschaft und Umwelt, Lehrstuhl für Produktions- und Ressourcenökonomie landwirtschaftlicher Betriebe durchgeführt. Das Ziel des Projektes ist die Analyse und Bewertung unterschiedlicher Winterweizenanbausysteme (Ertrag, Resistenz) und Fungizidstrategien, basierend auf bestehende Daten und Feldexperimente unter besonderer Berücksichtigung ökonomischer, ökologischer und gesamtgesellschaftlicher Aspekte. Evaluierung bestehender Datenpools für Fungizidversuche an Winterweizen, Vergleich unterschiedlicher Züchtungsziele für Winterweizen in Freilandversuchen. Bestimmung von Qualitätsparametern und Rückstandsanalysen für PSM in Winterweizen. Erfassung der Kosten und Darstellung des Nutzens unterschiedlicher Anbausysteme und Fungizidstrategien auf betriebswirtschaftlicher und gesamtgesellschaftlicher Ebene.
Das Projekt "Possible effects of transgenic plants on soil organisms" wird vom Umweltbundesamt gefördert und von Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät, Fachbereich Landeskultur und Umweltschutz, Institut für Bodenkunde und Pflanzenernährung durchgeführt. Soil is the first component of the environment that can be effected by GM plants, because they do not only consume the nutritive substances from the soil, but also release there different compounds during a growing period, and leave in the soil their remains. If the plants are modified to increase their resistance to plant pathogens, particularly bacteria, they can also affect the other microorganisms important for plant development. Also there are no considerable data about possible effect of GM plants on soil organic matter and chemical processes in soil. For the experiment it is planned to use transgenic potato plants (Solanum tuberosum L. cv. Desiree) expressing a chimerical gene for T4 lysozyme for protection against bacterial infections; - obtaining and short-term growing of GM plants in laboratory conditions; - extraction and collection of root exudates and microbial metabolites from rhizosphere; - analysis of these exudates by Pyrolysis-Field Ionisation Mass Spectrometry (Py-FIMS) in comparison with the exudates of wild-type plants and transgenic controls not harbouring the lysozyme gene, and with dissolved organic matter from non-cropped soil; - creation of 'fingerprints' for each new transgenic line in combination with certain soil on the basis of marker signals. Expected impacts: - New highly cost-effective express testing system for the risk assessment of genetically modified plants at the earliest stages of their introduction; - The conclusion about safety/danger of GM plants for the soil ecosystems; - Model for prediction of possible risk caused by GM plants.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Resistenzforschung und Stresstoleranz durchgeführt. Das übergeordnete Ziel von GeneBank2.0 ist es, die Ex-situ-Weizensammlung des IPK in eine aktiv in der Züchtung genutzte Sammlung umzuwandeln, indem ein integrierter Ansatz angewendet wird, der modernste Genomik, Phänomik, Biodiversitätsinformatik und Präzisionszüchtung umfasst. Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Die in den ersten beiden Phasen entwickelten und begonnenen PreBreeding Strategien werden in der dritten Projektphase weitergeführt. Das bezieht sich im Wesentlichen auf die Nutzung wertvoller neuer Allele und Gene für die Merkmale Kornertrag, Antherenextrusion sowie Braunrost-, Gelbrost- und Mehltauresistenz.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Abteilung Zellbiologie der Pflanze durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.