Das Projekt "Die Rolle von NO in der Signaltransduktion bei pflanzlichen Abwehrreaktionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: GSF - Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie.Pflanzen verfügen über vielfältige Mechanismen zum Schutz vor Pathogenbefall oder Umweltstress. Dabei weisen pflanzliche Abwehrsysteme Ähnlichkeiten zum angeborenen Immunsytem von Säugern auf, bei dem Stickoxid (NO) eine Schlüsselrolle spielt. Auch in Pflanzen finden sich wichtige Komponenten der durch NO induzierten Signalübertragung. NO aktiviert Abwehrgene und ist beteiligt an programmiertem Zelltod und an der Abwehr von Pathogenen. Das vorgeschlagene Projekt hat zum Ziel, die Signalübertragung durch NO in Tabak und Arabidopsis zu erforschen und die Rolle von NO bei der Abwehr von Pathogenen zu klären. (1) Ein Schwerpunkt soll in der Aufklärung der Signalübertragung durch NO und der Aktivierung von Abwehrgenen liegen. Es soll geklärt werden, ob NO als mobiles Signal dient, und ob andere Signalmoleküle (z.B. Salicylsäure) in die NO-Signalübertragung integriert sind. (2) Um die Bedeutung von NO für die Regulation von Abwehrmechanismen zu klären, sollen Expressionsprofil und Expressionsdynamik von NO-induzierten Genen durch DNA-ChipTechnologie analysiert werden. Diese neuartige Technik wird auch Aufschluss über eine etwaige Vernetzung der NO-Signalübertragung mit pflanzlichen Hormonsystemen liefern. Die Erforschung der Signalübertragung durch NO in Pflanzen kann unser Verständnis von Resistenzmechanismen vertiefen und zur Entwicklung pathogen-resistenter Pflanzen beitragen.
Das Projekt "Die systemisch erworbene Resistenz bei Pflanzen - ein - omics Ansatz zur Pathogenantwort" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München, Institut für Biochemische Pflanzenpathologie.Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.
Das Projekt "Mikrobiom-Übertragung von resistenten auf anfällige Baumarten als neue Methode zur Bekämpfung phytopathogener Pilze in der Forstwirtschaft" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik.Die Projektidee beruht darauf, dass manche Arten, Varietäten oder Provenienzen der Ulmen und Douglasien Resistenzen gegenüber den Erregern des Ulmensterbens bzw. der Douglasienschütte besitzen. Die Hintergründe für diese Krankheitsresistenzen sind bisher unbekannt und können durch das Pflanzengenom, durch epigenetische Veränderungen und/oder durch das Mikrobiom gefördert werden. Die chinesische Ulme (Ulmus parvifolia) ist, im Gegensatz zu der einheimischen Bergulme (U. glabra), oft resistent gegenüber dem Erreger des Ulmensterbens (Ophiostoma novo-ulmi). Bei der Douglasie (Pseudotsuga menziesii) ist bekannt, dass bei der Anfälligkeit gegenüber der Rostigen Douglasienschütte (Rhabdocline pseudotsugae) besonders Herkunftsunterschiede eine entscheidende Rolle spielen. So ist die Küstendouglasie (var. menziesii) widerstandsfähiger gegenüber dem Erreger der Krankheit als die Gebirgsdouglasie (var. glauca). Im Rahmen dieses Forschungsvorhabens soll eine mögliche Beteiligung des Mikrobioms und des Epigenoms an der Ausprägung der Krankheitsresistenzen untersucht werden. Unter Verwendung beider Testsysteme soll eine effektive Methode zum Transfer der Mikrobiome resistenter Arten bzw. Varietäten auf anfällige Baumarten etabliert werden. Dazu werden verschiedene Übertragungsmethoden getestet. Hervorzuheben ist, dass im Gegensatz zu anderen biologischen Kontrollsystemen, bei denen Einzelisolate oder Konsortien verwendet werden, hier das vollständige Mikrobiom der resistenten Bäume übertragen werden soll. Die Wirkung der Mikrobiom-Übertragung soll durch Resistenztests mit den entsprechenden Erregern bewertet werden. Neben der phänotypischen Bewertung werden Untersuchungen der DNA Aufschluss darüber geben, ob die Mikrobiom-Übertragung epigenetische Veränderungen an den einheimischen Baumarten ausgelöst hat, die zur Resistenz führen.
Das Projekt "Identifizierung von Genen fuer Mehltauresistenz der in Deutschland vertriebenen Zuchtsorten von Winter- und Sommergerste" wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan, Lehrstuhl für Pflanzenbau und Pflanzenzüchtung.Bestimmung von Hauptgenen fuer Mehltauresistenz im deutschen Sortiment von Winter- und Sommergerstenzuchtsorten.
Das Projekt "Sojapflanzen mit Krankheitsresistenz" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe Biologie, Institut für Biologie III.Eine Infektion mit Krankheitserregern oder eine Behandlung mit bestimmten Chemikalien (z.B. Salicylsäure) induziert in Pflanzen einen physiologischen Zustand, der 'Priming' genannt wird. Im 'geprimten' Zustand können Pflanzen ihre Abwehrreaktionen bei einer Folgeattacke schneller aktivieren. Dadurch kommt es oft zur Krankheitsresistenz. Erst kürzlich haben wir gefunden, dass die Mitogen-aktivierten Proteinkinasen MPK3 und MPK6 und die Proteine CALRETICULIN 3 (CRT), LUMINAL BINDING PROTEIN 2 (BIP) und SHEPHERD (SHD) beim 'Priming' in der Modellpflanze Arabidopsis thaliana eine wichtige Rolle spielen. Das Protein EDR1 dagegen unterdrückt das 'Priming'. Um diese Ergebnisse aus der Grundlagenforschung in der Praxis anzuwenden, werden wir mit der BASF Plant Science GmbH Gene für MPK3, MPK6, CRT3, BIP2 und SHD in der wichtigen Kulturpflanze Sojabohne überexprimieren und die Expression des EDR1-Gens gezielt ausschalten. Dadurch sollen Sojapflanzen entwickelt werden, die eine erhöhte Krankheitsresistenz besitzen und damit zur Steigerung der globalen Sojaproduktion beitragen. Das Vorhaben soll auch auf die Grundlagenforschung zurückwirken. Dies indem wir Sojapflanzen bereitstellen, in denen die Substrate von Mitogen-aktivierten Proteinkinasen und ihren Kinase-Kinasen identifiziert werden können.
Das Projekt "Transkriptionelle und metabolische Muster der Gerste für basale Krankheitsresistenz und -anfälligkeit gegenüber Mehltau (B08)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan, Lehrstuhl für Phytopathologie.Wir möchten grundlegende Mechanismen der quantitativen Resistenz und Anfälligkeit gegen den Echten Gerstenmehltau aufklären. Wir werden die Daten aus unseren vorläufigen und geplanten Transkriptomanalysen nutzen, um die Funktion von Genen zu analysieren, die in Elternpflanzen und RACB-transgenen Pflanzen mit entweder erhöhter oder erniedrigter Anfälligkeit differenziell experimiert sind. Die Modifikation der Zellwand und der Zellzyklus stehen dabei bereits jetzt im Fokus unseres Interesses. Um ein tiefgehendes Verständnis der Transkriptionsmuster zu erlangen, nutzen wir Ansätze der reversen Genetik, Metabolismusstudien und Zellbiologie in unterschiedlichen Gerstengenotypen.
Das Projekt "Untersuchungen zur züchterischen Verbesserung der Standfestigkeit bei Dinkel" wird/wurde ausgeführt durch: Universität Hohenheim, Landessaatzuchtanstalt (720).Dinkel zeichnet sich ursprünglich durch einen langen Halm aus, was häufig zu hoher Lageranfälligkeit führte. Der Dinkelanbau wird im Wesentlichen im ökologischen Landbau betrieben, wo der Einsatz von Wachstumsreglern untersagt ist. So ist in der Dinkelzüchtung die Verbesserung der Standfestigkeit das vorrangige Zuchtziel. Die Standfestigkeit lässt sich einerseits durch Einlagerung von rht-(Zwerg-)Genen aus dem Weichweizenbereich verbessern. Die entstehenden kurzstrohigen und stabilen Linien sind jedoch durch höhere Krankheitsanfälligkeit sowie unerwünschte morphologische und qualitative Weizencharakteristica gekennzeichnet. Bei der Evaluierung umfangreicher Genbanksortimente andrerseits wurden standfeste dinkeltypische Genotypen mit längerem Stroh gefunden diese entsprachen jedoch nicht den Ertragserwartungen. Die bisher in umfangreichen Rückkreuzungsprogrammen entwickelten Zuchtstämme kommen dem Zuchtziel eines längeren und standfesten Halms mit typischem Dinkelcharakter näher, jedoch sind Krankheitsresistenz und Ertragspotential noch zu verbessern. Aus dem Programm wurden in Deutschland die Sorten CERALIO und SCHWABENSPELZ zugelassen.
Das Projekt "BioKreativ 3 - DETECTOME: Die Entschlüsselung der molekularen Determinanten natürlicher Variation in der Erkennung von Mikroben durch Pflanzen für eine Verbesserung der Krankheitsresistenz und Symbiose" wird/wurde ausgeführt durch: Max-Planck-Institut für molekulare Pflanzenphysiologie.
Das Projekt "Possible effects of transgenic plants on soil organisms" wird/wurde gefördert durch: Deutscher Akademischer Austausch Dienst / North Atlantic Treaty Organization (NATO). Es wird/wurde ausgeführt durch: Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät, Fachbereich Landeskultur und Umweltschutz, Institut für Bodenkunde und Pflanzenernährung.Soil is the first component of the environment that can be effected by GM plants, because they do not only consume the nutritive substances from the soil, but also release there different compounds during a growing period, and leave in the soil their remains. If the plants are modified to increase their resistance to plant pathogens, particularly bacteria, they can also affect the other microorganisms important for plant development. Also there are no considerable data about possible effect of GM plants on soil organic matter and chemical processes in soil. For the experiment it is planned to use transgenic potato plants (Solanum tuberosum L. cv. Desiree) expressing a chimerical gene for T4 lysozyme for protection against bacterial infections; - obtaining and short-term growing of GM plants in laboratory conditions; - extraction and collection of root exudates and microbial metabolites from rhizosphere; - analysis of these exudates by Pyrolysis-Field Ionisation Mass Spectrometry (Py-FIMS) in comparison with the exudates of wild-type plants and transgenic controls not harbouring the lysozyme gene, and with dissolved organic matter from non-cropped soil; - creation of 'fingerprints' for each new transgenic line in combination with certain soil on the basis of marker signals. Expected impacts: - New highly cost-effective express testing system for the risk assessment of genetically modified plants at the earliest stages of their introduction; - The conclusion about safety/danger of GM plants for the soil ecosystems; - Model for prediction of possible risk caused by GM plants.
Das Projekt "Experimentelle Anwendung und Erweiterung von Werkzeugen zur prädiktiven Züchtung in Kartoffel, Teilvorhaben 2: Materialentwicklung, Feldversuchsdurchführung und Implementierung sensorgestützter Phänotypisierungsmethoden (SaKa)" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: SaKa Pflanzenzucht GmbH & Co. KG, Zuchtstation Windeby.Kartoffelstärke kann sehr vielseitig eingesetzt werden und ist ein wichtiger Baustein der Nationalen Bioökonomie-Strategie Deutschlands. Im Vergleich zu überwiegend monogen vererbten Merkmalen wie manchen Krankheitsresistenzen sind quantitative Merkmale wie der Knollen- oder Stärkeertrag züchterisch schwieriger zu bearbeiten. Autotetraploidie, geringer Vermehrungskoeffizient und eine Vielzahl relevanter Selektionsmerkmale mindern den Zuchtfortschritt in quantitativen Merkmalen bei Kartoffeln zusätzlich. Verfahren der prädiktiven Züchtung wie genomische Selektion versprechen daher einen großen Nutzen in der Kartoffelzüchtung. In der vorausgegangenen Projektphase (PotatoTools) wurden genomische und statistische Werkzeuge zur prädiktiven Stärkekartoffelzüchtung aber auch erste Vorhersagemodelle entwickelt. Das Hauptziel des vorliegenden Vorhabens ist es nun, unter Nutzung der bereits entwickelten genomischen Ressourcen wesentliche Fragen zum Einsatz prädiktiver Verfahren in der Kartoffelzüchtung zu beantworten. Im Detail planen wir die (i) Erhöhung der Repräsentativität des Sets an strukturellen Genomvarianten durch Erweiterung des Resequenzierungspanels, (ii) Abschätzung der Genauigkeit der Leistungsvorhersage über Materialgruppen unterschiedlichen Verwandtschaftsgrads hinweg sowie der Genauigkeit der Vorhersage von Populationsmittel und Spaltungsvarianz, (iii) Evaluation der Vorhersagegenauigkeit von spektroskopisch erfassten Prädiktoren vgl. zu molekulargenetischen Prädiktoren und (iv) Optimierung von Kartoffelzüchtungsprogrammen hinsichtlich des genutzten Züchtungsschemas und der idealen Balance zwischen kurz- und langfristigem Selektionsgewinn. Mit dem in diesem Projekt gewonnen Wissen wird die prädiktive Züchtung für quantitativ vererbte Merkmale der Kartoffel weiter verbessert sowie für den routinemäßigen Einsatz vorbereitet werden.
Origin | Count |
---|---|
Bund | 337 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 335 |
Text | 3 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 4 |
offen | 335 |
Language | Count |
---|---|
Deutsch | 320 |
Englisch | 60 |
Resource type | Count |
---|---|
Dokument | 3 |
Keine | 225 |
Webseite | 113 |
Topic | Count |
---|---|
Boden | 339 |
Lebewesen & Lebensräume | 339 |
Luft | 339 |
Mensch & Umwelt | 339 |
Wasser | 339 |
Weitere | 331 |