Schwerebeschleunigung an der Erdoberfläche, d.h. Abweichung des prädizierten Schwerewertes vom Referenzwert 981000 mGal (9,81 m/s²). Genähert entspricht der Wert somit der relativen Abweichung einer Waage in ppm (Millionstel), d.h. auf Sylt (Gitterwert ca. 500 mGal) wird eine Person mit einer Masse von 100 kg auf einer mit 9,81 m/s² geeichten Waage ca. 50 g schwerer gewogen als auf dem Brocken (Gitterwert 0 mGal). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurden die Schweregitter mit einer Auflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: kein Abzug, keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: keine Bouguer-Plattenreduktion: keine Geländekorrektur (nur für die Rasterverarbeitung): Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau (nur für die Rasterverarbeitung): Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Reduktion Normalschwere und Geländereduktion; Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Wiederherstellung der Geländereduktion und der Normalschwere im Raster; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Offset: 981000 mGal Aktualität: 2016
Bougueranomalie (vollständig topographisch reduzierte Freiluftanomalie) an der Erdoberfläche, d.h. prädizierter Schwerewert minus Normalschwere (Geodetic Reference System 1980) auf Geländehöhe minus vollständiger Effekt der Topographie oberhalb der Nullniveaufläche, gerechnet mit Standarddichte 2,67 g/cm³ und Integrationsradius 100 km (abweichend von den in der Geophysik üblichen 167 km). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Schwereanomalie (Freiluftanomalie) an der Erdoberfläche, d.h. prädizierter Schwerewert minus Normalschwere (Geodetic Reference System 1980) auf Geländehöhe. Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurden die Schweregitter mit einer Auflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur (nur für die Rasterverarbeitung): Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau (nur für die Rasterverarbeitung): Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Geländereduktion; Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Wiederherstellung der Geländereduktion im Raster; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Mittlere Bougueranomalie über eine Basis von 4 km. Diese spezielle Darstellung dient den Vermessungsverwaltungen der Länder als Planungsgrundlage für gravimetrische Messungen im Sinne der Feldanweisung für Terrestrische Gravimetrie (FA-TG, Abschnitt C.4.1.1). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m; Tiefpassfilterung der Bougueranomalien mit 4 km gleitendem Mittelwert Verwendungszweck: Abschätzung der notwendigen Punktdichte für die Geoidmodellierung entsprechend der Feldanweisung für Terrestrische Gravimetrie (FA-TG) der AdV, Version 1.0, Abschnitt C4.1.1 mit Anlage 8 Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Horizontaler Gradient der mittleren Bougueranomalie über eine Basis von 4 km. Diese spezielle Darstellung dient den Vermessungsverwaltungen der Länder als Planungsgrundlage für gravimetrische Messungen im Sinne der Feldanweisung für Terrestrische Gravimetrie (FA-TG, Abschnitt C.4.1.1) Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m; Tiefpassfilterung der Bougueranomalien mit 4 km gleitendem Mittelwert, anschließend Gradientenbildung und Skalierung auf Basislänge 4 km Verwendungszweck: Abschätzung der notwendigen Punktdichte für die Geoidmodellierung entsprechend der Feldanweisung für Terrestrische Gravimetrie (FA-TG) der AdV, Version 1.0, Abschnitt C4.1.1 mit Anlage 8 Einheit: mGal/(4 km) = 10^-5 m/s-2 / (4 km) Aktualität: 2016
Hochwasser gefährdeter Bereich Tidegebiet Elbe Hamburg Fachliche Beschreibung: „Der durch Tidehochwasser, insbesondere Sturmfluten, gefährdete Bereich im Tidegebiet der Elbe besteht aus den Landflächen zwischen der Gewässerlinie der Elbe (§ 3) und der Linie der öffentlichen Hochwasserschutzanlagen oder, sofern öffentliche Hochwasserschutzanlagen nicht bestehen, der Linie des amtlich bekannt gemachten Bemessungswasserstands für öffentliche Hochwasserschutzanlagen zuzüglich eines Sicherheitszuschlags von 0,50 m." Auszug aus § 53 HWaG Rechtlicher Hintergrund: § 53 des Hamburgischen Wassergesetzes (HWaG) in der Fassung vom 29.05.2005 über "Hochwassergefährdeter Bereich im Tidegebiet der Elbe"
Auf Grund unterschiedlicher Erkundungsmöglichkeiten standen für die onshore-Bereiche (von der 10 m Wassertiefenlinie bis zum Festland) und offshore-Bereiche (ab der 10 m Wassertiefenlinie) unterschiedliche Eingangsdaten für die 3D-Modellierung zur Verfügung. Für den offshore-Bereich wurden, aufgrund der begrenzten Anzahl tiefer und datierter Bohrungen, als Datengrundlage für das 3D-Modell vorrangig geophysikalische Daten verwendet. Im onshore-Bereich wurden bohrungsgestützte, vernetzte geologische Profilschnitte zur Generierung der Flächen verwendet. Die Fläche der Quartärbasis weist einige Abweichungen von der bisherigen Karte der Tiefenlage der Quartärbasis von Brückner-Röhling et al. (2005) auf. Die Abweichungen bewegen sich im Bereich zwischen +100 m und -400 m. Durch die tiefere Lage der neuen Quartärbasisfläche erhöht sich die Mächtigkeit der quartären Sedimente, je nach verwendetem Geschwindigkeitsmodell, das für die Zeit/Tiefen-Umrechnung der Seismik verwendet wurde, auf über 1.200 m im NW-Teil. Für die Basisfläche der pleistozänen Ablagerungen wurden sowohl Tiefenlagenkarten (in m unter NN) als auch Mächtigkeitskarten (in m) in 10 m und 50 m Intervallen erstellt.
Auf Grund unterschiedlicher Erkundungsmöglichkeiten standen für die onshore-Bereiche (von der 10 m Wassertiefenlinie bis zum Festland) und offshore-Bereiche (ab der 10 m Wassertiefenlinie) unterschiedliche Eingangsdaten für die 3D-Modellierung zur Verfügung. Für den offshore-Bereich wurden, aufgrund der begrenzten Anzahl tiefer und datierter Bohrungen, als Datengrundlage für das 3D-Modell vorrangig geophysikalische Daten verwendet. Im onshore-Bereich wurden bohrungsgestützte, vernetzte geologische Profilschnitte zur Generierung der Flächen verwendet. Die Fläche der Quartärbasis weist einige Abweichungen von der bisherigen Karte der Tiefenlage der Quartärbasis von Brückner-Röhling et al. (2005) auf. Die Abweichungen bewegen sich im Bereich zwischen +100 m und -400 m. Durch die tiefere Lage der neuen Quartärbasisfläche erhöht sich die Mächtigkeit der quartären Sedimente, je nach verwendetem Geschwindigkeitsmodell, das für die Zeit/Tiefen-Umrechnung der Seismik verwendet wurde, auf über 1.200 m im NW-Teil. Für die Basisfläche der pleistozänen Ablagerungen wurden sowohl Tiefenlagenkarten (in m unter NN) als auch Mächtigkeitskarten (in m) in 10 m und 50 m Intervallen erstellt.
Der Datenbestand beinhaltet die selektiv erfassten Biotoptypen und FFH-Lebensraumtypen innerhalb der FFH-Gebiete (FFH-Basiserfassung) und in ausgewählten Bereichen außerhalb der niedersächsischen FFH-Gebiete (aktualisierte Landesweite Biotopkartierung) auf naturnahen bis degenerierten Moorstandorten und weiteren kohlenstoffreichen Böden mit Bedeutung für den Klimaschutz (BHK50). Dem NLWKN vorliegende qualitätsgeprüfte kartierte Biotoptypen, die gemäß Kartierschlüssel Niedersächsischer Biotoptypen ausschließlich auf organischen Standorten vorkommen, wurden auch außerhalb der zuvor genannten Bodenkulisse abgebildet, da diese auf weitere Moorstandorte hinweisen.Die FFH-Lebensraumtypen (LRT: durch geographische, abiotische und biotische Merkmale gekennzeichnete völlig natürliche oder naturnahe terrestrische oder aquatische Gebiete) gem. Anhang I der FFH-Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 - zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen - werden in den niedersächsischen FFH-Gebieten flächendeckend kartiert und sollen auch landesweit erfasst werden. Biotope, die innerhalb der FFH-Gebiete keinen LRT-Status aufweisen werden nicht in den digitalen Karten vermerkt. Die hier dargestellten Moorbiotope außerhalb der FFH-Gebiete (aktualisierte Landesweite Biotopkartierung) wurden ebenfalls thematisch (hinsichtlich ihrer Wertigkeit, ihres Lebensraumtyps o.Ä.) selektiv ausgewählt und erfasst. Es handelt sich daher um keine flächendeckende Darstellung der Biotoptypen auf Mooren. Versiegelte, besiedelte, innerörtliche Bereiche wurden aufgrund mangelnder Bedeutung für den Moorschutz nicht abgebildet.Bei den dargestellten Flächen handelt es sich um Biotopkomplexe. Aus diesen wird in der Legende aus darstellungstechnischen Gründen lediglich der dominanteste bedeutsame Moorbiotoptyp (MBdtsDom) in Form einer abgeleiteten Moorbiotopkagegorie abgebildet. Die Felder zum Schutzstatus, Wertstufen, Seltenheit, Nährstoffempfindlichkeit, Grundwasserabhängigkeit etc. beziehen sich in diesem Datenbestand ebenfalls auf den dominanten bedeutsamen Moorbiotoptyp. Aus der Attributttabelle des Datenbestandes sind jedoch auch die weiteren enthaltenen Biotoptypen bzw. Lebensraumtypen sowie deren prozentuale Flächenanteile ersichtlich.Dargestellt wird darüber hinaus der dominante Moor-LRT, der aus dem dominanten Moorbiotoptyp abgeleitet wurde. Die Moor-LRT werden in der Attributtabelle getrennt nach LRT der Landfläche und der Stillgewässer dargestellt, da innerhalb eines Polygons beide LRT-Kategorien vorkommen können. Der Erhaltungszustand des dominierenden Landflächen-LRT kann aus dem Feld „FFHZSTH_ML“, der für den dominanten Stillgewässer-LRT aus dem Feld „FFHZSTH_MS“ entnommen werden.
Klimawandel bezeichnet eine längerfristige Temperaturänderung der Erdatmosphäre. In den vergangenen zwei bis drei Millionen Jahre gab es auf der Erde einen zyklischen Wechsel von Warm- und Kaltphasen. Das ist im Wesentlichen auf die Neigung der Erdachse und die elliptische Umlaufbahn der Erde um die Sonne und dem daraus resultierenden Abstand der Erde zur Sonne sowie dem Einstrahlungswinkel der Sonnenstrahlen auf die Erde zurückzuführen. Auch die ebenfalls zyklischen Veränderungen unterliegende Aktivität der Sonne hat Einfluss auf das Erdklima. Darüber hinaus gibt es weitere natürliche Faktoren wie beispielsweise Vulkanismus und durch Rückkopplungseffekte verursachte Veränderungen der Meeresströmungen, die das Klima beeinflussen. In den letzten 150 Jahren hat jedoch der Mensch entschieden dazu beigetragen, die Konzentration von Treibhausgasen in der Atmosphäre zu erhöhen und so eine globale Erwärmung voranzutreiben. Das ist auf die massive Nutzung fossiler Energieträger (Kohle, Erdöl und Erdgas) und eine veränderte Landnutzung, wie die Rodung von Wäldern und die Trockenlegung von Mooren zurückzuführen. Laut aktuellem IPCC-Bericht ist die globale atmosphärische Konzentration von CO 2 seit vorindustrieller Zeit um 40 % angestiegen. Die atmosphärischen Konzentrationen von CO 2 , Methan und Stickstoffoxiden sind mittlerweile so hoch wie nie zuvor innerhalb der letzten 800.000 Jahre. In jeder der letzten drei Dekaden fand eine zunehmende Erwärmung der Erdoberfläche statt, die stärker war als in jeder zurückliegenden Dekade seit 1850. Die Folgen sind bereits deutlich erkennbar. Global findet eine Erwärmung der Atmosphäre und der Ozeane statt, Permafrostböden tauen auf und setzen Methan frei, das Meereis schmilzt, ebenso die Eisschilde des Festlandes, der Meeresspiegel steigt, und zwar schneller, als bisherige Modelle dies erwarten ließen. Regional kommt es vermehrt zu Extremwetterereignissen wie Hitzeperioden, Stürmen, Starkregenereignissen und Hagel. Im Juli 2016 hat das Potsdam-Institut für Klimafolgenforschung (PIK) eine durch die vormalige Senatsverwaltung für Stadtentwicklung und Umwelt in Auftrag gegebene Konzeptstudie zur Anpassung an die Folgen des Klimawandels in Berlin (AFOK) vorgelegt. Die Studie beschreibt auf Basis aktueller wissenschaftlicher Erkenntnisse die Klimazukunft Berlins bis zum Ende des Jahrhunderts und benennt Handlungsoptionen zur Anpassung an die Auswirkungen der klimatischen Veränderungen. Sie bildet die Grundlage für das Berliner Anpassungsprogramm als Teil des Berliner Energie- und Klimaschutzprogramms (BEK). Mit Hilfe eines Indikatoren basierten Klimafolgenmonitorings wird die Entwicklung klimatischer Parameter in der Vergangenheit und Gegenwart hinsichtlich erkennbarer Trends überwacht. Darüber hinaus sollen damit die eintretenden Klimafolgen frühzeitig erkannt werden, um Anpassungsmaßnahmen zielgerichtet planen und durchzuführen zu können. Auswirkungen des Klimawandels Weitere Informationen Klimafolgenmonitoring Weitere Informationen Programm zur Anpassung an die Folgen des Klimawandels in Berlin Weitere Informationen Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) Stadtentwicklungsplan (StEP) Klima Zentrum KlimaAnpassung IPCC-Berichte Global Change Institute
Origin | Count |
---|---|
Bund | 285 |
Land | 172 |
Type | Count |
---|---|
Bildmaterial | 1 |
Ereignis | 23 |
Förderprogramm | 153 |
Kartendienst | 3 |
Text | 164 |
Umweltprüfung | 16 |
unbekannt | 66 |
License | Count |
---|---|
geschlossen | 182 |
offen | 228 |
unbekannt | 16 |
Language | Count |
---|---|
Deutsch | 403 |
Englisch | 43 |
Resource type | Count |
---|---|
Archiv | 23 |
Bild | 31 |
Datei | 32 |
Dokument | 59 |
Keine | 176 |
Unbekannt | 1 |
Webdienst | 28 |
Webseite | 190 |
Topic | Count |
---|---|
Boden | 334 |
Lebewesen & Lebensräume | 426 |
Luft | 259 |
Mensch & Umwelt | 426 |
Wasser | 371 |
Weitere | 411 |