Das Projekt "Teilprojekt DLR e.V." wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Gesamtvorhaben: Im Vordergrund von Go4Hy2 stehen zwei, für die Wettbewerbsfähigkeit eines emissionsfreien, voll-elektrischen BZ-Batt-Hybrid-Antriebsstrangs wesentlichen Kernkriterien: i.G. zu einem Verbrenner-Hybriden vergleichbare Leistungsdichte mit hoher Ausfallsicherheit und ein Scale-Up fähiges System inkl. E-Motor und Leistungselektronik in relevanter Leistungsklasse von 250kW. Das bisherige Niederdruck-Stack- BZ-Hybrid-System (ca. 120kW inGo4H2) soll hierbei zu einem druckaufgeladenen BZ-HybridSystem (ca. 250kW in Go4Hy2), weiterentwickelt werden. Weiterhin wird auf gesteigerte Leistungsdichten und Skalierbarkeit im schuberzeugenden Modul (LE und Motor) Wert gelegt, sowie eine verlässliche Steuerung der Systeme auf Basis luftfahrtzertifizierter Hardware angestrebt. Ergänzt werden die Arbeiten durch Konzepte für Hybrid-Systemarchitekturen zur Auslegung eines BZ-Hybrid-Regionalflugzeugs. Teilvorhaben: Es soll ein 250 kW Antriebssystem auf Basis eines emissionsfreien BZ-Batterie-Hybrid für ein Passagier-Flugzeug mit bis zu 4 Personen entwickelt werden. Es soll aus dem Automotive-Bereich verfügbare druckaufgeladene BZ-Technologie auf die Luftfahrtanwendung übertragen werden. Bisherige Systemlösungen zu Modularität, Kühlung, etc. aus der Niederdruck-BZ-Technologie können teilweise übernommen und ggfs. angepasst werden. So soll eine Antriebslösung mit einer 2-3fach höheren Leistungsdichte wie bisher entstehen die als Ausgangspunkt für die Skalierung auf größere Leistungen geeignet ist und über eine hohe Ausfallsicherheit verfügt. Dadurch wird im Vergleich zu konventionellen Verbrenner-Antrieben, neben der Emissionsfreiheit ein weiterer entscheidender Vorteil erreicht. Die Integration sowie Test und Demonstration der Technologie mit erfolgt in einer fliegenden Testplattform. Bereits während der Entwicklung werden entsprechende Anforderungen und Sicherheitsanalysen des nötigen Permit-to-fly insbesondere betreffend der BZ-Technologie erbracht.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Forschungszentrum Karlsruhe GmbH in der Helmholtz-Gemeinschaft, Institut für Technische Chemie durchgeführt. Das Ziel dieses Projektes war es, den Nachweis zu erbringen, dass hydrothermale Vergasung und SOFC zur Stromerzeugung sinnvoll und effektiv gekoppelt werden können. Der Schwerpunkt der Untersuchungen lag in der Identifikation von Gaszusammensetzungen und Betriebsbedingungen, unter denen ein stabiler Betrieb der SOFC möglich ist. Deshalb wurden SOFC-Einzelzellen mit den am KIT Campus Nord über hydrothermale Vergasung hergestellten Brenngasen (im Nachfolgenden als Biogas bezeichnet) betrieben. Die Leistungsfähigkeit und die Stabilität der SOFC wurden in Abhängigkeit der Gaszusammensetzung und der Betriebsparameter der Zelle ermittelt. Im Laufe des Projektes hat sich herausgestellt, dass zwar hohe Leistungsdichten (1.26W/cm2 bei T=793 C und S/C=4) erreicht werden können, jedoch ein kohlenstofffreier Betrieb unter typischen SOFC Betriebsbedingungen nicht möglich ist. Versuche, die Gasqualität anlagenseitig zu erhöhen, sprich die Kohlenstoffketten in Richtung C1Komponenten zu verschieben, wurden nicht unternommen weil nicht von technischer Relevanz. Aus diesem Grund wurde der Schwerpunkt der Untersuchungen auf die Kohlenstoffbildung gelegt. Durch systematische Untersuchungen mit unterschiedlichen Modellgasen konnte der Einfluss einzelner Kohlenwasserstoffkomponenten auf die Kohlenstoffbildung ermittelt werden. Parallel zu diesen Untersuchungen wurden SOFC - Einzelzellen mittels Impedanzspektroskopie und Strom/Spannungs-Kennlinien elektrochemisch charakterisiert. Eine hochauflösende Messdatenauswertung ermöglichte eine eindeutige Identifizierung aller zum Gesamtwiderstand der Einzelzelle beitragenden Verlustprozesse. Auf Basis dieser Erkenntnisse wurde ein eindimensionales stationäres Modell zur Vorhersage des Strom/Spannungsverhaltens von planaren anodengestützten SOFC Einzelzellen entwickelt. Die Simulationsresultate zeigen eine hervorragende Übereinstimmung mit den experimentell ermittelten Daten. Durch die gerechtfertigte Annahme, dass die Elektrooxidation der Brenngase ausschließlich über den Wasserstoffpfad abläuft, ist das Modell in der Lage, bei bekannter lokaler Gaszusammensetzung, das Stromspannungsverhalten der Zelle im Biogasbetrieb sehr gut wiederzugeben. Das entwickelte elektrochemische Modell kann zukünftig ohne weiteres in ein Gesamtmodell, welches dann auch die heterogene Katalyse von kohlenwasserstoffhaltigen Brenngasen beinhaltet, integriert werden.
Das Projekt "Anoden auf CNT-Basis" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Keramische Technologien und Systeme durchgeführt. Stand der Technik sind bei Lithium-Ionen-Batterien Anoden, die aus Graphit bestehen. Nanokristallines Silicium lässt noch höhere Ladungskapazitäten zu. Nachteilig sind jedoch die geringe Leitfähigkeit des Siliciums und die Pulverisierung infolge der zyklischen Ladevorgänge. Ein aussichtsreiches Material sind auch Carbon Nanotubes (CNT). Für ungerichtete CNT werden spezifische Kapazitäten bis 180 F/g angegeben. CNT-Rasenstrukturen ermöglichen theoretisch eine weitere Erhöhung der Kapazität. Das IKTS verfolgt das Ziel, Anoden mit vertikal ausgerichteten CNT auf technisch aussichtsreichen Stromableitern herzustellen, die eine weitere Steigerung von Kapazität und Leistungsdichte bei hoher elektrochemischer Stabilität erlauben. Ein erster Schwerpunkt ist die Herstellung von gerichteten CNT-Strukturen auf elektrisch leitfähigen Unterlagen, d.h. auf aussichtsreichen Materialien für den Stromableiter. Durchgeführt werden Untersuchung zum Einfluss von Länge, Durchmesser, Ausrichtung, Dichte und Art der CNT auf die spezifische Kapazität. Eine weitere Aufgabe besteht in der Evaluierung verschiedener leitfähiger Unterlagen auf denen ein optimales CNT-Wachstum erzielt werden kann, wobei Kupfer im Fokus steht. Aufbauend auf dem ersten Arbeitspaket erfolgt die Evaluierung von Strukturen, die aus Kombinationen von gerichteten Carbon-Nanotubes und Silicium-Nanopartikeln bestehen. Die Herstellung erfolgt durch eine der CNT-Herstellung nachgeschaltete Siliciumabscheidung Solche Strukturen sind aussichtsreiche Kandidaten für das Erreichen noch höherer Ladungskapazitäten und Leistungsdichten. Die elektrochemische Charakteristik der im IKTS entwickelten Anoden auf CNT-Basis wird in einer Lithium-Ionenbatteriezelle am Fraunhofer ISC gemessen und mit anderen Anodentypen verglichen. Ausgewählt wird dann die Anode mit der höchsten Ladungskapazität und den günstigsten Herstellungskosten.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik durchgeführt. Das Ziel dieses Projektes war es, den Nachweis zu erbringen, dass hydrothermale Vergasung und SOFC zur Stromerzeugung sinnvoll und effektiv gekoppelt werden können. Der Schwerpunkt der Untersuchungen lag in der Identifikation von Gaszusammensetzungen und Betriebsbedingungen, unter denen ein stabiler Betrieb der SOFC möglich ist. Deshalb wurden SOFC-Einzelzellen mit den am KIT Campus Nord über hydrothermale Vergasung hergestellten Brenngasen (im Nachfolgenden als Biogas bezeichnet) betrieben. Die Leistungsfähigkeit und die Stabilität der SOFC wurden in Abhängigkeit der Gaszusammensetzung und der Betriebsparameter der Zelle ermittelt. Im Laufe des Projektes hat sich herausgestellt, dass zwar hohe Leistungsdichten (1.26W/cm2 bei T=793 C und S/C=4) erreicht werden können, jedoch ein kohlenstofffreier Betrieb unter typischen SOFC Betriebsbedingungen nicht möglich ist. Versuche, die Gasqualität anlagenseitig zu erhöhen, sprich die Kohlenstoffketten in Richtung C1Komponenten zu verschieben, wurden nicht unternommen weil nicht von technischer Relevanz. Aus diesem Grund wurde der Schwerpunkt der Untersuchungen auf die Kohlenstoffbildung gelegt. Durch systematische Untersuchungen mit unterschiedlichen Modellgasen konnte der Einfluss einzelner Kohlenwasserstoffkomponenten auf die Kohlenstoffbildung ermittelt werden. Parallel zu diesen Untersuchungen wurden SOFC - Einzelzellen mittels Impedanzspektroskopie und Strom/Spannungs-Kennlinien elektrochemisch charakterisiert. Eine hochauflösende Messdatenauswertung ermöglichte eine eindeutige Identifizierung aller zum Gesamtwiderstand der Einzelzelle beitragenden Verlustprozesse. Auf Basis dieser Erkenntnisse wurde ein eindimensionales stationäres Modell zur Vorhersage des Strom/Spannungsverhaltens von planaren anodengestützten SOFC Einzelzellen entwickelt. Die Simulationsresultate zeigen eine hervorragende Übereinstimmung mit den experimentell ermittelten Daten. Durch die gerechtfertigte Annahme, dass die Elektrooxidation der Brenngase ausschließlich über den Wasserstoffpfad abläuft, ist das Modell in der Lage, bei bekannter lokaler Gaszusammensetzung, das Stromspannungsverhalten der Zelle im Biogasbetrieb sehr gut wiederzugeben. Das entwickelte elektrochemische Modell kann zukünftig ohne weiteres in ein Gesamtmodell, welches dann auch die heterogene Katalyse von kohlenwasserstoffhaltigen Brenngasen beinhaltet, integriert werden.
Das Projekt "Teilprojekt H2Fly GmbH" wird vom Umweltbundesamt gefördert und von H2Fly GmbH durchgeführt. Vorhaben: Im Vordergrund von Go4Hy2 stehen zwei, für die Wettbewerbsfähigkeit eines emissionsfreien, voll-elektrischen BZ-Batt-Hybrid-Antriebsstrangs wesentlichen Kernkriterien: i.G. zu einem Verbrenner-Hybriden vergleichbare Leistungsdichte mit hoher Ausfallsicherheit und ein Scale-Up fähiges System inkl. E-Motor und Leistungselektronik in relevanter Leistungsklasse von 250kW. Das bisherige Niederdruck-Stack- BZ-Hybrid-System (ca. 120kW inGo4H2) soll hierbei zu einem druckaufgeladenen BZ-HybridSystem (ca. 250kW in Go4Hy2), weiterentwickelt werden. Weiterhin wird auf gesteigerte Leistungsdichten und Skalierbarkeit im schuberzeugenden Modul (LE und Motor) Wert gelegt, sowie eine verlässliche Steuerung der Systeme auf Basis luftfahrtzertifizierter Hardware angestrebt. Ergänzt werden die Arbeiten durch Konzepte für Hybrid-Systemarchitekturen zur Auslegung eines BZ-Hybrid-Regionalflugzeugs. Teilvorhaben: Die H2Fly wird dabei einschlägige Verfahren anwenden um Sicherheitsrisiken des Antriebsstrangs, der Integration und des Flugbetriebs zu analysieren und durch Entwicklung neuer Anforderungen und neuer Systemlösungen zu mittigeren. Dies wird durch Begleitung der Entwicklungsarbeiten während Planung, Entwurf, Vorentwicklung und Test realisiert. Hierbei werden insbesondere z. T. in der Luftfahrt bisher nicht definierte sicherheitstechnische Anforderungen an Systeme, Funktionen, Architekturen und Integration entwickelt und aufgestellt. Dabei werden Sicherheitskonzepte bzgl. funktionaler Sicherheit und Gefährdung für diese Antriebsstränge und geeignete Systemarchitekturen entwickelt. Weiterhin werden Testprozeduren und Erprobungskampagnen des Antriebsstrangs entwickelt und begleitet, insbesondere werden dabei auch Erprobungsflüge mit der Hy4 begleitet.
Das Projekt "Development of an internal Reforming Alcohol High Temperature PEM Fuel Cell Stack" wird vom Umweltbundesamt gefördert und von Institut für Mikrotechnik Mainz e.V. & Co. KG durchgeführt. The main objective of the proposal is the development of an internal reforming alcohol high temperature PEM fuel cell. Accomplishment of the project objective will be made through: Design and synthesis of robust polymer electrolyte membranes for HT-PEMFCs, which will be functional within the temperature range of 190-22OoC. Development of alcohol (methanol or ethanol) reforming catalysts for the production of CO-free hydrogen in the temperature range of HT PEMFCs, i.e. at 190-220oC. Integration of reforming catalyst and high temperature MEA in a compact Internal Reforming Alcohol High Temperature PEMFC (IRAFC). Integration may be achieved via different configurations as related to the Position of the reforming catalyst. The proposed compact system does away with conventional fuel processors and allows for efficient heat management. since the 'waste' heat produced by the fuel cell is in-situ utilized to drive the endothermic reforming reaction. The targeted power density of the system is 0.15 W/cm2 at a ceil voltage ofü.7 V. Thus, the concepts of a catalytic reformer and of a fuel cell are combined in a single, simplified direct alcohol (e.g. methanol) High Temperature PEM fuel cell reactor. The heart of the system is the membrane electrode assembly (MEA) comprising a high-temperature proton-conducting electrolyte sandwiched between the anodic (reforming catalyst + PUC) und cathodic Pt/C gas diffusion electrodes. According to the configuration und the operating conditions described above, the IRAFC is expected to be auto thermal, highly efficient and with zero CO emissions. In addition, the direct consumption ofH2 by the MEA (fuel cell) and the electrochemical promotion effect is expected to enhance the kinetics of reforming reactions, thus facilitating the efficient operation of the reforming catalyst at temperatures below 220 C.
Das Projekt "FC-CAT - Fuel Cell CFD and though-plane Modelling" wird vom Umweltbundesamt gefördert und von AVL Deutschland GmbH durchgeführt. Die ständige Weiterentwicklung neuer Materialien und Fabrikationsprozesse für die Brennstoffzelle erhöhen sukzessive derer Leistungsdichten. Daraus resultieren neue Herausforderungen für den Betrieb der Brennstoffzellensysteme wie beispielsweise dem Wasser- und Wärmemanagement, welche mittels guter Modelle quantifiziert und abgebildet werden können. Neue Materialien, veränderte Schichtstrukturen und neuartige Designmöglichkeiten verursachen grundlegende Änderungen in den Transport- und elektrochemischen Eigenschaften der funktionalen Schichten, welche in diesem Projekt detailliert untersucht werden soll. Daher ist das Projektziel die Analyse und quantitative Beschreibung der funktionalen Schichten mit neuen Materialien durch experimentelle ex-situ und in-situ Charakterisierung, sowie die Entwicklung neuer Modelle (1D, 2D) zur Beschreibung der dynamischen Prozesse in diesen neuen Strukturen/Schichten bzw. die Erweiterung eines bestehenden stationären 3D-Modells für eine verbesserte realitätsnahe Abbildung der stattfindenden Prozesse.
Das Projekt "New composite DMFC anode with PEDOT as mixed conductor and catalyst support" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Project description: The direct methanol fuel cell (DMFC) as electrochemical power source has attracted attention due to its simple system design, low operating temperature, and convenient fuel storage and supply. Major limitations of the DMFC are related to the low power density, which is a consequence of the poor kinetics of the anode reaction, poisoning of the catalyst by reaction intermediates, and methanol crossover. Research efforts have to address improvements of the anode catalyst structure and the ion-exchanger membrane. This project aims at the development of a new type of membrane anode assembly PEM*/PEDOT/CAT based on the conducting polymer PEDOT (Poly(3,4-ethylene-dioxythiophene)) as catalyst support and a new type of proton-exchange membrane (PEM*) with reduced methanol permeability. As the catalyst (CAT) Pt and Pt-Ru will be utilised. The new proton exchange membranes are to be made of thermal-stable polymers of arylide, so that they can be used in fuel cells working at higher temperatures (Tianjin University, China). Conventional Pt/C cathodes will be used for manufacturing the membrane electrode assemblies (MEAs) to be tested in single cell experiments. The application of PEDOT as mixed electronic and ionic conductor is expected to improve the charge transfer kinetics and the transport of protons and electrons within the anode structure leading to a better utilisation of the noble metal catalyst.
Das Projekt "Teilvorhaben R1-2" wird vom Umweltbundesamt gefördert und von H-TEC SYSTEMS GmbH durchgeführt. Das geplante Vorhaben führt die Hauptziele der Bekanntmachung ' Kopernikus-Projekte für die Energiewende' des Bundesministeriums für Bildung und Forschung aus der 1. Projektphase des P2X Projektes fort. Die PEM Elektrolyse wurde als zukunftsträchtige Technologie für die 2. P2X Förderphase ausgewählt, die einen signifikanten Beitrag zu den Zielen der deutschen Energiewende leisten soll. Für den großflächigen Einsatz dieser Technologie ist durch den Gedanken der Nachhaltigkeit eine Reduktion der kritischen Materialien der Platin-Gruppe sowie die Steigerung des Wirkungsgrades Hauptziel des Vorhabens. Eine Umsetzung der Technologie für die 3. Phase als Pilotanlage wird in diesem Zeitraum vorbereitet. Von H-TEC SYSTEMS wird ein PEM Elektrolysestack entwickelt, der durch den Einsatz neuer MEA Technologie und optimierter Komponenten eine deutliche Erhöhung der Leistungsdichte und Effizienz aufweist. Die neue Technologie wird von Stacks der kW auf die MW Klasse skaliert. Dafür sind im ersten Abschnitt intensive Untersuchungen notwendig, um zu bestimmen wie sich die gesteigerte Leistungsfähigkeit der von den Projektpartnern entwickelten CCMs und PTLs auf den Stack auswirkt und an welcher Stelle Modifikationen vorgenommen werden müssen. Die Entwicklung soll bei Bewahrung der Skalierbarkeit und der Massenfertigungstauglichkeit z.B. durch eine deutliche Erhöhung der Leistungsdichte auch wirtschaftliche Vorteile bringen.
Das Projekt "alpha-Laion" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. Ziel des Projektes ist die Erforschung und Entwicklung von neuen oxydischen Kathodenmaterialien mit hoher Energiedichte und die Entwicklung passender Elektrolyte, die bei den höheren Spannungslagen stabil sind. Die BASF wird entsprechend in dem Projekt auf seinen Vorarbeiten zu den sogenannten Hoch-Energie NCMs aufbauen, die eine um ca. 30Prozent höhere Energiedichte im Vergleich zu anderen bekannten oxydischen Kathodenmaterialien aufweisen, zur Zeit aber wegen des breiten Anforderungsfenster im automobilen Bereich noch nicht einsetzbar sind. Da die Materialien ein erhöhtes Spannungsfenster benötigen, werden parallel Elektrolyte entwickelt, die in diesem Fenster stabil sind. BASF wird die Kathodenmaterialien hinsichtlich deren Eigenschaften optimieren und auf das geforderte Anforderungsprofil hin testen. Im Einzelnen werden Modifikationen bzgl. Zusammensetzung, Oberflächenmorphologie, Teilchengrößen und Verteilung hergestellt und charakterisiert. Parallel erfolgt die Optimierung des Elektrolyten hinsichtlich weiterer und stabilerer Additive.
Origin | Count |
---|---|
Bund | 507 |
Type | Count |
---|---|
Förderprogramm | 507 |
License | Count |
---|---|
open | 507 |
Language | Count |
---|---|
Deutsch | 507 |
Englisch | 22 |
Resource type | Count |
---|---|
Keine | 241 |
Webseite | 266 |
Topic | Count |
---|---|
Boden | 228 |
Lebewesen & Lebensräume | 187 |
Luft | 302 |
Mensch & Umwelt | 506 |
Wasser | 130 |
Weitere | 507 |