API src

Found 37 results.

Related terms

Markt für Gold

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing

GEMET - General Multilingual Environmental Thesaurus

Nach einer Laufzeit von rd. drei Jahren wurde jetzt die erste Phase des Projekts European Topic Centre on Catalogue of Data Sources (ETC / CDS) der Europäischen Umweltagentur (EUA) abgeschlossen. Das Umweltbundesamt war im Rahmen dieses Projektes an der Erarbeitung des General Multilingual Environmental Thesaurus (GEMET) zusammen mit dem Italienischen Consiglio Nazionale delle Ricerche (CNR) wesentlich beteiligt. Für die Erstellung des GEMET wurden verschiedene nationale Umweltthesauri aus europäischen Ländern (u.a. Italien, Niederlande, Portugal und Spanien) sowie als Hauptanteil ein wesentlicher Auszug aus dem Umweltthesaurus des UBA herangezogen. Der Umweltthesaurus EnVoc von UNEP - Infoterra wurde komplett in GEMET integriert. Damit liegt erstmals ein allgemeiner Umweltthesaurus auf europäischer Ebene vor, der als Standard für die zukünftige Arbeit bei der inhaltlichen Erschließung von Metadaten, von wissenschaftlicher Fachliteratur, von Forschungsprojekten und zum Umweltrecht sowie beim Wiederauffinden von umweltrelevanten Informationen gelten kann. GEMET enthält in der Version 2001 rd. 5 300 Deskriptoren (Vorzugsbezeichnungen) und rd. 1 260 Synonyme. Er ist polyhierarchisch aufgebaut (Ober-, Unter- und verwandte Begriffe), verfügt über eine Grobeinteilung der Begriffe in 30 Gruppen und 40 Themengebiete und hat für die nachfolgenden Sprachen entsprechende Äquivalente: Englisch, Deutsch, Dänisch, Finnisch, Niederländisch, Norwegisch, Schwedisch, Französisch, Griechisch, Italienisch, Portugiesisch, Spanisch, Ungarisch, Slowakisch, Amerikanisches Englisch, Bulgarisch, Russisch, Tschechisch, Slowenisch.. Da GEMET auch mehr als 4 000 Definitionen enthält, kann man ihn wie ein Glossar benutzen. GEMET steht über die Homepage des ETC / CDS im Internet in verschiedenen Formaten zur Verfügung. Das ETC / CDS wurde mit dem 31.12.2001 beendet. Eine Aktualisierung der Daten von GEMET ist derzeit nicht vorgesehen.

Handbuch Sport und Umwelt

Das Projekt "Handbuch Sport und Umwelt" wird vom Umweltbundesamt gefördert und von Büro für Umweltforschung und Umweltplanung Schemel und Partner durchgeführt. Die Diskussion ueber Sport und Umwelt wird seit Jahren kontrovers gefuehrt: Der DSB fordert den 'Sportplatz um die Ecke', waehrend Anwohner von Sportanlagen unter Berufung auf ihr Nachbarrecht gegen den 'unzumutbaren Laerm' klagen. Die Diskussion wird dabei weniger mit Sachargumenten gefuehrt als aufgrund interessenbedingter Einstellungen und Standpunkte. Das F+E-Vorhaben soll in diesem Zusammenhang zu einer Versachlichung der Diskussion beitragen, um hier einen Interessenausgleich zwischen Sport und Umwelt herbeizufuehren. Dabei sollten nicht nur diese Akzeptanzprobleme im bebauten und unbebauten Innenbereich beruecksichtigt werden, sondern ein - insbesondere in der Zukunft - weitaus wichtigerer Bereich ist die Verhinderung und Verringerung der Belastung der Umwelt, der Natur und Landschaft, im Aussenbereich. Das Vorhaben soll die Erstellung eines Handbuches zum Ziel haben, das als leicht verstaendliches Nachschlagewerk der Oeffentlichkeit, Vertretern des DSB und Planungsbehoerden dient.

Entwicklung einer Datenbank fuer Grenz- und Richtwerte

Das Projekt "Entwicklung einer Datenbank fuer Grenz- und Richtwerte" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Forschungszentrum Informatik, Forschungsbereich Datenbanksysteme durchgeführt. Um gemessene Umweltdaten bearbeiten, bewerten und interpretieren zu koennen, werden in zahlreichen Komponenten des Umweltinformationssystems Baden-Wuerttemberg (UIS) Grenzwerte aus verschiedenen Quellen, zB Rechtsvorschriften oder technische Standards, verwendet. Es ist erforderlich, bei der Darstellung von Messwerten kontextabhaengig auf Grenzwerte zuzugreifen, zB abhaengig vom Umweltthemenbereich, dem gemessenen Parameter, dem Messzeitraum usw. Deshalb wurde eine zentrale, systemuebergreifende Grenzwerte-Datenbank des UIS Baden-Wuerttemberg vom Forschungszentrum Informatik an der Universitaet Karlsruhe entwickelt. Sie ermoeglicht eine konsistente Sicht auf Grenzwerte sowie deren einheitliche Verwendung in den IuK-Verfahren der Umweltverwaltung. Die Grenzwerte-Datenbank zeichnet sich durch zwei wesentliche Charakteristika aus: 1) Es wird eine Vielzahl von Werten aus diversen Gesetzen, Richtlinien und weiteren Umweltstandards beruecksichtigt. Trotz der Schwierigkeiten aufgrund der stark unterschiedlichen Terminologie und der zT inkonsistenten Semantik gelang es, Grenzwerte einheitlich zu modellieren. Dies eroeffnet eine umfassende Nutzung der Daten. 2) Das realisierte System unterstuetzt die Suche nach Grenzwerten ueber semantisch unscharfe Anfragen. So koennte zB die Suche nach einem Grenzwert fuer Nitrat im Grundwasser den zur Beantwortung 'aehnlichsten' Wert, in diesem Fall den aus Trinkwasserverordnung, anzeigen. Eine normale Datenbank wuerde hier nichts finden. Das System ist implementiert und wird zZ im Informationstechnischen Zentrum (ITZ) der Landesanstalt fuer Umweltschutz (LfU) fuer den Produnktionsbetrieb vorbereitet. Als erste Zielanwendung ist die Integration in das Technosphaere- und Luft-Informationssystem (TULIS) vorgesehen. Durch die Verwendung von Oracle Forms fuer die interaktiven Schnittstellen ist ein verteilter Zugriff ueber das lokale Netz der LfU von unterschiedlichsten Rechnern, ua Vax/VMS, UNIX, Macintosh und IBM-PC, aus moeglich. Die relevanten Werte aus dem von der LfU zusammengestellten Nachschlagewerk zu Grenzwerten ('Grenzwerte - Kennzahlen zur Umweltbelastung in Deutschland und in der EG', Ecomed Fachverlag, Landsberg 1992) werden in die Datenbank uebernommen.

Wirkungsanalyse und Erfolgskontrolle der Aufklaerungsmassnahmen des BMI und UBA (am Beispiel der Taschenbuecher und Broschueren)

Das Projekt "Wirkungsanalyse und Erfolgskontrolle der Aufklaerungsmassnahmen des BMI und UBA (am Beispiel der Taschenbuecher und Broschueren)" wird vom Umweltbundesamt gefördert und von Psydata Institut für Marktanalysen, Sozial- und Mediaforschung durchgeführt. Ziel des Vorhabens war die Untersuchung von Akzeptanz, Nutzen und Wirkungen der seit 1979/1981 von BMI und UBA konzipierten Taschenbuecher und Broschueren. Es sollten Erkenntnisse fuer die kuenftige Gestaltung bzw. Optimierung dieser Publikationen gewonnen werden. Die fuer 'Multiplikatoren' (Journalisten, Paedagogen, Umweltverbaende) konzipierten Taschenbuecher werden von diesen als hoechst wichtig beurteilt. Sie werden als Nachschlagewerke intensiv genutzt, durchweg akzeptiert und sind durch keine der sonstigen Informationsquellen ersetzbar. Die Fortsetzung der Reihe wird dringend gewuenscht. Optimierungen sollten am praktischen Nutzen ansetzen. Angeregt werden z.B. eine staendige Aktualisierung, mehr Tips fuer umweltfreundliches Verhalten, besseres Anschauungsmaterial (Grafiken, Fotos) und Quellenhinweise. Auch drucktechnische Verbesserungen koennten die Gebrauchshaeufigkeit der Nachschlagewerke foerdern. Gewuenscht werden u.a. ein stabilerer Einband, eine strapazierfaehigere Bindung, ein grosszuegigerer Satzspiegel. Die Broschueren kommen bei ihrer Zielgruppe - dem Buerger der breiten Mittelschicht - sehr gut an. Die Aufmachung gefaellt mehrheitlich. An der Glaubwuerdigkeit bestehen keine Zweifel. Gefordert wird jedoch, die Verantwortlichkeit nicht nur des 'kleinen Mannes', sondern auch von Staat und Industrie fuer den Umweltschutz staerker herauszustellen. Praktische Tips muessen an den realen Lebensbedingungen der Buerger anknuepfen. Sie duerfen weder laecherlich wirken, noch wirklichkeitsfremd sein. Neuauflagen sollten sich deshalb sowohl inhaltlich als auch gestalterisch an der Broschuere 'Rettet die Luft' orientieren, ...

Online-Know-How-Infrastruktur Wasser/Abwasser für das Land Bremen

Das Projekt "Online-Know-How-Infrastruktur Wasser/Abwasser für das Land Bremen" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachgebiet Umweltverfahrenstechnik durchgeführt. Eine internetbasierte Wissensdatenbank stellt für den Betreiber und Förderer eine Art Sammelbecken für alle interessierten Leser, Websurfer und professionelle Interessenten als Einstieg ins Internet dar. Gleichzeitig ist es eine sehr effektive Schaltzentrale zur Kopplung universitärem Know-hows mit den wissenschaftlichen und industriellen Interessen einer Region im Hinblick auf eine Innovationszeitverkürzung zur Stärkung regionaler Unternehmen (insbesondere KMUs). Ein derartiger Technologie- und Know-how-Transfer ermöglich dem Anbieter der Wissensdatenbank gezielt den Themenschwerpunkt zum Vorteil einer regionalen Wirtschaft zu gestalten. Im vorliegenden Projekt wurde eine derartige Internetplattform mit der Funktion eines Sammelbeckens als Infrastrukturmaßnahme für das Land Bremen zum deutschsprachigen Kompetenzzentrum im Bereich Wasser/Abwasser aufgebaut und veröffentlicht. Die Basis für die 'Online-Know-How-Infrastruktur Wasser/Abwasser für das Land Bremen' (OKIW A) welche im Internetportal wasser-wissen.de realisiert wurde, stellt ein umfassendes wissenschaftliches Lexikon im genannten Bereich dar, welches durch eine Reihe von Erweiterungen die angestrebte Vernetzung ermöglicht.

Verschwundene Doerfer: Die Ortsabbrueche des Lausitzer Braunkohlenreviers bis 1993

Das Projekt "Verschwundene Doerfer: Die Ortsabbrueche des Lausitzer Braunkohlenreviers bis 1993" wird vom Umweltbundesamt gefördert und von Sorbisches Institut e.V. , Serbski institut z.t. durchgeführt. Das deskriptive historische Ortslexikon 'Verschwundene Doerfer. Die Ortsabbrueche des Lausitzer Braunkohlenreviers bis 1993' erreichte innerhalb von zwei Jahren (1995 und 1996) beim Domowina-Verlag Bautzen zwei Auflagen (gleich Schriften des sorbischen Instituts /Spisy Serbskeho instituta; 8). Die zweite, ueberarbeitete Auflage umfasst 319 Seiten mit 60 Abbildungen, 2 Krokis und 1 Uebersichtskarte im Massstab 1 zu 300000. Das Nachschlagewerk bietet in erster Linie eine landeskundliche Dokumentation des historischen und ethnischen Kulturverlustes, der durch die vollstaendige Abbaggerung von 77 Lausitzer Siedlungen bis 1993- im wesentlichen zu DDR-Zeiten- eingetreten ist. Fuer das groesste Braunkohlenrevier der DDR wird diese Konsequenz einseitiger Energiepolitik nachgewiesen. Zugleich wird auf die Trendwende hingewiesen, die mit dem Uebergang zur Marktwirtschaft 1990-1993 im bergbaubedingten Ortsabbruch- und Umsiedlungsgeschehen des Lausitzer Reviers eingetreten ist. Braunkohlenbergbau unter grundsaetzlichem Verzicht auf Ortsabbrueche und Einwohnerumsiedlungen ist unmoeglich. Moeglich und in Anfaengen verwirklicht aber ist eine behutsame Handhabung dieser Massnahmen im Hinblick auf Bewohner, Kultur und Umwelt der Ober- und Niederlausitz.

Erarbeitung eines Fachlexikons Abwasser- und Abfalltechnik in den Sprachen Deutsch/Polnisch

Das Projekt "Erarbeitung eines Fachlexikons Abwasser- und Abfalltechnik in den Sprachen Deutsch/Polnisch" wird vom Umweltbundesamt gefördert und von ATV - Vereinigung für Abwasser, Abfall und Gewässerschutz durchgeführt. Die ATV übersetzte Begriffe des bereits vorliegenden ATV-Wörterbuchs Deutsch/ Englisch/ Französisch in die polnische Sprache, um ein Deutsch-Polnisches Wörterbuch Abwasser-Abfall zu erstellen. Dabei konnte die ATV insbesondere auf die Sachkenntnis ihrer Fachleute mit der Muttersprache Polnisch sowie auf weitere polnische Experten zurückgreifen. Im ATV-Wörterbuch Deutsch/ Englisch/ Französisch wurden Abwasser- und Abfallbegriffe aus verschiedenen Normen zusammengefasst und in die jeweiligen Sprachen übersetzt. Dabei wurde auch auf vorliegende Normen bzw. Normenentwürfe wie die DIN 4045 sowie die EN-DIN-Norm 1086 (Entwurf) zurückgegriffen. Die ATV stützte sich bei der Auswahl und der Übersetzung der Begriffe auf vorliegende Definitionen, die der Literatur entnommen wurden. Das ATV-Fachwörterbuch erhielt folgenden Aufbau: jeder Begriff ist mit einer fortlaufenden Nummer versehen. Auf diese Nummern verweisen die Zahlen in den alphabetisch geordneten Indices der jeweiligen Sprachen, die sich an den Hauptteil des Fachwörterbuches anschließen. Die am Ende eines Absatzes angegebenen Quellen (Normen) beziehen sich - soweit es sich um internationale Normen handelt - auf die Sprachen Deutsch, Englisch und Französisch. Die Übersetzungen der Begriffe in Portugiesisch und Polnisch sind nicht genormt. Die Reihenfolge der Sprachen ist: Deutsch - Englisch - Französisch - Portugiesisch - Polnisch.

Die Schmetterlinge Baden-Wuerttembergs

Das Projekt "Die Schmetterlinge Baden-Wuerttembergs" wird vom Umweltbundesamt gefördert und von Staatliches Museum für Naturkunde Karlsruhe durchgeführt. Grundlagenwerk Schmetterlinge im Rahmen des Artenschutzprogramms Baden-Wuerttember - Band 1-6 (bereits erschienen); Band 7 (erscheint Mai/Juni 1998)

Teilbereich Monitoring von phytophagen Insekten (S-B1)

Das Projekt "Teilbereich Monitoring von phytophagen Insekten (S-B1)" wird vom Umweltbundesamt gefördert und von Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung durchgeführt. 1. Errichtung und Anwendung eines Monitoringsystems für Tagfalter (Lepidoptera) und Pflanzensauger (Heteroptera), 2. Dokumentation der Biodiversität ausgewählter Insektengruppen unter verschiedener Landnutzung, 3. Erarbeitung und Herausgabe von 4 Bestimmungswerken (Field Guides). Die ausgewählten Insektengruppen werden mit einer standardisierten Methodik und einheitlichem Protokoll auf den Bioobservatorien erfasst. Alle eingerichteten Observatorien werden berücksichtigt. Die Ergebnisse auf den Observatorien werden vergleichend betrachtet und in Beziehung gesetzt zur Landnutzung, einem räumlichen und klimatischen Gradienten und der Saisonalität. Die gesammelten Insekten stellen die Grundlage für die Erarbeitung der Bestimmungswerke dar. Das errichtete Monitoringsystem kann nach Biota durch namibianische oder südafrikanische Einrichtungen selbständig weitergeführt werden. Die Analyse der Daten erlaubt Schlussfolgerungen über den Einfluss von Landnutzung auf die Diversität und liefert Vorschläge für eine nachhaltige Nutzung und Erhaltung von Biodiversität. Die Bestimmungsbücher werden in Afrika gedruckt und publiziert, und können allgemein von einem großen Personenkreis genutzt werden.

1 2 3 4