API src

Found 28 results.

Related terms

Digitale Orthophotos (belaubt) Hamburg

Für die Herstellung von digitalen Orthophotos (DOP) erfolgte bis 2019 im 3-Jahres-Rhythmus ein gesonderter Farbbildflug bei voller Belaubung im Sommer für die Fläche der gesamten Stadt Hamburg (ausgeschlossen sind die Wattenmeerinseln). 2022 wurde das Digitale Orthophoto aus einer Satellitenszene abgeleitet. Bodenauflösung: 0,5m Aufnahmedatum: 03. Juni 2022 [Pléiades 1A/B "© CNES (2022), Distribution Airbus DS"] Die Daten aus dem Jahrgang 2022 werden aufgrund von Lizenzbedingungen nicht öffentlich bereitgestellt.

Digitale Orthophotos Hamburg

Aktuelle Information: Im Jahr 2023 fand keine Luftbildbefliegung statt. Das Digitale Orthophoto 2023 wurde daher aus mehreren Satellitenszenen abgeleitet. Satellitensystem: WorldView-3 Aufnahmezeitpunkte: 02/23; HH Altengamme: 09/23 GSD: 0,30 m prozessiert auf 0,15 m Das Digitale Orthophoto 2023 unterliegt Lizenzbedingungen und steht nicht zum Download zur Verfügung. [Maxar Products. Dynamic Product © 2023 Maxar Technologies.] DOP Erläuterung: Aus den Luftbildern werden mosaikierte und georeferenzierte, farbige digitale Orthophotos (RGBI) mit unterschiedlichen Auflösungen und Kachelgrößen hergestellt. Orthophotos sind auf Grundlage eines digitalen Geländemodells geometrisch entzerrte Aufnahmen, die das Aussehen eines Luftbildes mit den geometrischen Eigenschaften einer Karte vereinen. Weil sie auch in digitaler Form vorliegen, können sie in unterschiedlichen Maßstäben ausgegeben und wie eine Karte benutzt werden. Objekte, die sich unmittelbar auf der Erdoberfläche befinden, werden lagerichtig dargestellt. Objekte, die über das Niveau der Erdoberfläche hinausragen werden bedingt durch das Herstellungsverfahrens für digitale Orthophotos mitunter nicht lagerichtig wieder gegeben. Besonders geeignet als räumlich exakte, bildhafte Bezugsgrundlage für den Aufbau von Geoinformationssystemen und zur Verknüpfung mit oder als Hintergrundinformation für raumbezogene fachspezifische Daten für Fachinformationssysteme sowie für Raumplanungen aller Art. Anwendungsgebiete sind alle Aufgabenbereiche, für deren Fragestellungen ein Raumbezug erforderlich ist, unter anderem Energie-, Forst- und Landwirtschaft, Verwaltung, Demographie, Wohnungswesen, Landnutzungs-, Regional- und Streckenplanung, Straßenbau und -bewirtschaftung, Facility Management, Verkehrsnavigation und Flottenmanagement, Transport, Bergbau, Gewässerkunde und Wasserwirtschaft, Ökologie, Umweltschutz, Militär, Geologie und Geodäsie, aber auch Kultur, Erholung und Freizeit sowie Kommunikation. RGB (Red Green Blue): Die Bandkombination aus Rot, Grün und Blau bildet die menschliche Farbwahrnehmung nach. Gesunde Vegetation wird grün, urbane Flächen werden weiß / grau und Wasserflächen werden, abhängig der Trübung, blau dargestellt. CIR (Color Infrared): Die Bandkombination aus nahem Infrarot, Rot und Grün hebt die Vegetation hervor. Diese reflektiert aufgrund des Chlorophyllgehalts der Pflanzen im nahen Infrarotbereich besonders stark und wird rötlich dargestellt. Urbane Flächen erscheinen cyan-blau / grau und Wasserflächen dunkelblau.

ATKIS Digitales Basis Landschaftsmodell Hamburg

Ankündigung: Im Zeitraum vom 21.10. bis 18.11.2024 findet die Migration der ATKIS Daten in die neue Betriebsumgebung statt. In diesem Zeitraum werden die Daten nicht aktualisiert. Nutzen Sie unsere GeoBasisDaten? Wenden Sie sich bei Fragen an das Funktionspostfach: 3a-verfahrensbetreuung@gv.hamburg.de Das Digitale Basis-Landschaftsmodell (Basis-DLM) orientiert sich am Basismaßstab 1: 25 000. Es wird für alle Objekte eine Lagegenauigkeit von ± 3 m angestrebt. Es hat eine Informationstiefe, die über die Darstellung der Digitalen Stadtkarte von Hamburg (1: 20 000) hinausgeht. Der Inhalt und die Modellierung der Landschaft des Basis-DLM sind im ATKIS®-Objektartenkatalog (ATKIS®-OK Basis-DLM) beschrieben. Die Erfassung der Objektarten, Namen, Attribute und Referenzen erfolgte in drei aufeinander folgenden Realisierungsstufen, die im ATKIS®-OK Basis-DLM ausgewiesen sind. In Hamburg stehen die Realisierungsstufen für die gesamte Landesfläche seit 2007 aktuell zur Verfügung. Seit Oktober 2009 wird das Basis-DLM im bundeseinheitlichen AAA-Modell geführt. Die Objektarten sind ATKIS-OK enthalten (siehe Verweis). Besonders geeignet als geometrische und semantische Bezugsgrundlage für den Aufbau von Geoinformationssystemen und zur Verknüpfung mit raumbezogenen fachspezifischen Daten für Fachinformationssysteme, zur rechnergestützten Verschneidung und Analyse mit thematischen Informationen, für Raumplanungen aller Art und zur Ableitung von topographischen und thematischen Karten. Anwendungsgebiete sind alle Aufgabenbereiche, für deren Fragestellungen ein Raumbezug erforderlich ist, unter anderem Energie-, Forst- und Landwirtschaft, Verwaltung, Demographie, Wohnungswesen, Landnutzungs-, Regional- und Streckenplanung, Straßenbau und Bewirtschaftung, Facility Management, Verkehrsnavigation und Flottenmanagement, Transport, Bergbau, Gewässerkunde und Wasserwirtschaft, Ökologie, Umweltschutz, Militär, Geologie und Geodäsie, aber auch Kultur, Erholung und Freizeit sowie Kommunikation.

Luftbilder MV

Luftbilder der Landesvermessung und sonstiges Luftbildmaterial, das für die Vermessungs- und Katasterverwaltung von Bedeutung ist werden von der Landesluftbildstelle im LAiV verwaltet .

Digitales Schrägluftbild Hamburg

Schrägluftbilder: 2018 wurde erstmals für ganz Hamburg ein Bildflug durchgeführt, bei dem hochaufgelöste Oblique-Luftbilder entstanden. Die eingesetzte Kamera nimmt zeitgleich sowohl Senkrechtbilder als auch Schrägbilder nach allen 4 Seiten auf. Der aktuelle Datensatz ist aus dem Frühjahr 2022 (März). Die Schrägbilder dienen als Quelle für die Analyse von städtebaulichen Situationen innerhalb des gesamten Stadtgebietes. Sie werden als Dienst in den Geoportalen im LGV bereitgestellt.

Digitale Orthophotos in Bodenauflösung 20 cm (DOP20) NW

Orthophotos sind hochauflösende, verzerrungsfreie, maßstabsgetreue Abbildungen der Erdoberfläche. Sie werden durch photogrammetrische Verfahren in Kenntnis der Orientierungsparameter und unter Hinzunahme eines Digitalen Höhenmodells aus Luftbildern hergestellt, die als Senkrechtaufnahmen vorliegen. Digitale Orthophotos sind georeferenziert, liegen flächendeckend vor und werden in einem 2-jährigen Zyklus erneuert. Sie werden nach dem Produktstandard des Landes, der auf den Festlegungen eines AdV-Standards (AdV Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder) beruht, hergestellt und weisen eine Bodenauflösung von 20cm/Pixel auf. Es handelt sich um 4-Kanal Multispektralbilder mit der Kanalbelegung RGBI (Rot-Grün-Blau-Nahes Infrarot).

Vorläufige Digitale Orthophotos NW

Im WMS NW vDOP stellt Geobasis NRW Zwischenergebnisse aus dem Herstellungsprozess der Digitalen Orthophotos (DOP) zur Verfügung. Der Dienst beinhaltet aktuelle, aber VORLÄUFIGE Ergebnisse aus den Produktionsprozessen des jeweils aktuellen Jahresprogramms der Orthophoto-Herstellung, die dem Qualitätsstandard des Amtlichen deutschen Vermessungswesens noch nicht umfänglich entsprechen. Der Dienst ist mit einem kennzeichnenden Wasserzeichen ausgestaltet. Die vorläufigen DOP (vDOP) werden im WMS nur temporär dargestellt. vDOP-Kacheln werden unverzüglich gelöscht, sobald die qualitätsgesicherte Produktion der entsprechenden DOP-Kacheln abgeschlossen ist.

Digitale Orthophotos NW

Orthophotos sind hochauflösende, verzerrungsfreie, maßstabsgetreue Abbildungen der Erdoberfläche. Sie werden durch photogrammetrische Verfahren in Kenntnis der Orientierungsparameter und unter Hinzunahme eines Digitalen Höhenmodells aus Luftbildern hergestellt, die als Senkrechtaufnahmen vorliegen. Digitale Orthophotos sind georeferenziert, liegen flächendeckend vor und werden in einem 2-jährigen Zyklus erneuert. Sie werden nach dem Produktstandard des Landes, der auf den Festlegungen eines AdV-Standards (AdV Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder) beruht, hergestellt und weisen eine Bodenauflösung von 10cm/Pixel auf. Es handelt sich um 4-Kanal Multispektralbilder mit der Kanalbelegung RGBI (Rot-Grün-Blau-Nahes Infrarot). Mit dem Bildflug 2018 wurde die Prozessierung des DOP als True Orthophoto eingeführt mit den gleichen geometrischen und radiometrischen Qualitäten wie bisher. Die Umstellung auf die neue Produktqualität wird mit der Prozessierung des Bildflugs 2020 Mitte 2021 abgeschlossen sein.

InVeKoS Digitale Orthophotos NW

Orthophotos sind hochauflösende, verzerrungsfreie, maßstabsgetreue Abbildungen der Erdoberfläche. Sie werden durch photogrammetrische Verfahren in Kenntnis der Orientierungsparameter und unter Hinzunahme eines Digitalen Höhenmodells aus Luftbildern hergestellt, die als Senkrechtaufnahmen vorliegen. InVeKoS Digitale Orthophotos sind georeferenziert, liegen flächendeckend vor und werden ergänzend zum regulären Bildflugprogramm in einem 2-jährigen Zyklus erneuert. Sie werden nach dem Produktstandard des Landes, der aber nicht vollumfänglich den AdV-Standards (AdV Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder) genügt, hergestellt und weisen eine Bodenauflösung von 20cm/Pixel auf. Es handelt sich um 4-Kanal Multispektralbilder mit der Kanalbelegung RGBI (Rot-Grün-Blau-Nahes Infrarot). Mit dem Bildflug 2023 wurde die Prozessierung in der Qualitätsstufe DOP begonnen.

Weltraum- und luftgestuetztes Werkzeug zur Eingrenzung verminter Gebiete

Das Projekt "Weltraum- und luftgestuetztes Werkzeug zur Eingrenzung verminter Gebiete" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Hochfrequenztechnik und Radarsysteme durchgeführt. SMART aims to provide the deminers (end-user) with safe, user-friendly, cost-effective, efficient and innovative tools for the monitoring of the environment and for the assistance to people in countries afflicted by landmines in order to achieve a higher quality of the service, by efficiently improving level 1 minefield surveys. For that, SMART will collect data with an airship multi-sensor survey system and during ground truth data collection sessions, process all data using data fusion techniques, land-cover classification tools and anomaly detection algorithms, integrate the tools and the data into the minefield survey system of the end-user and validate the results on validation test sites. SMART aims not at solving automatically the problem of mine suspected area reduction, but at helping the human analyst in their interpretation tasks. Objectives: The main objectives of SMART are: 1. to develop a generic methodology to systematically collect significant information on mine polluted regions with suspected area reduction as main topic 2. to develop efficient tools for mine infected area investigation and reduction using active and passive airborne high resolution sensors in order to assess the potential use of next generation high resolution satellite data for future survey operations for humanitarian demining 3. to validate the use of these tools and to validate their efficiency and reliability for improving the level 1 minefield survey 4. to provide the end-user with these tools in order to help them in improving efficiency and reliability of level 1 minefield survey Work description: Mine clearing is a long and dangerous task. A lot of time is lost inspecting areas that turn out to be mine free. Deminers are looking forward to methods that can reduce the suspected areas. An important lesson of some EC projects is that it is impossible to detect AP-mines with very high aerial photography. For that reason, SMART aims to reduce the suspected areas indirectly using land-cover classification and anomaly detection such as change detection. The data collection module of SMART will consist of the organisation of an airborne campaign (active full polarimetric SAR and passive multi-spectral sensors), the gathering of existing spaceborne data and the collection of ground-truth data, expert knowledge and context information. SMART aims to transform the raw data into meta-data that will be useful for the end-user survey expert. The transformation of the raw data into the meta-data will be based upon land-cover classification and change detection. In order to use all available information, data fusion will be considered. Data fusion techniques are needed to fuse the spectral bands of one sensor, to combine the airborne data with the spaceborne data, to merge the active sensors with the passive sensors and to integrate the expert knowledge and context information. A pre-processing module will transform the data so that fusion can be applied. In this modu

1 2 3