API src

Found 25 results.

IOWDB

The IOWDB was designed for the particular requirements of the Leibniz Institute for Baltic Sea Research. It is aimed at the management of historical and recent measurement of the IOW (to some extend of other data, too) and to provide them in a user-friendly way via the research tool ODIN (Oceanographic Database research with Interactive Navigation).

High-resolution quantitative electron microprobe analysis of garnets from Holsnøy, Norway

The island of Holsnøy is located in southwestern Norway. It is composed of metastable granulite facies lower crust that was subducted at 430 Ma when fluid infiltrated the region and reacted with large portions of the area to form eclogite facies shear zones. The eclogite facies assemblages contain garnet with granulite facies cores and eclogite facies fractures and rims. This dataset contains quantitative electron microprobe transects from garnets from four different eclogite facies samples. They are divided into two groups: rim profiles that run from the garnet rims toward the cores, and fracture profiles that run perpendicular to eclogite facies fractures. Some profiles have 5–10 µm spacing and were collected at 15 kV accelerating voltage whereas others have 1 µm spacing and were collected at 10 kV which reduced analytical convolution and facilitated higher spatial resolution of the profiles.

Edel- und sondermetallhaltige Abfallströme intelligent lenken: Bündelung, Zwischenlagerung, Recyclingeffizienz (ILESA)

Hinsichtlich der Erschließung der Recyclingpotenziale edel- und sondermetallhaltiger Abfälle aus unterschiedlichen Anfallstellen bestehen derzeit noch verschiedene ungenutzte Potenziale. Mittelfristig soll das Recycling ausgewählter, aus umweltpolitischer Sicht relevanter Edel- und Sondermetalle verbessert werden. Ziel des Vorhabens ist es vor diesem Hintergrund, Vorschläge zur Optimierung und intelligenten Gestaltung der Recyclingkette (von Erfassung bis Rückgewinnung) für komplexe edel- und sondermetallhaltige Abfallströme zu entwickeln. Dazu sind folgende drei Themenfelder zu bearbeiten: 1) Erfassung, Bündelung, 'Intelligente Logistik': Für die Bündelung und selektive Erfassung von auszuwählenden Abfallströmen mit (oft gering konzentrierten) Edel- und Sondermetallen sind qualitativ neuartige Logistikkonzepte und Möglichkeiten zur intelligenten Organisation der Materialströme und Gestaltung der Informationsflüsse zu entwickeln, um das Recycling der Edel- und Sondermetalle sowohl in technischer als auch in wirtschaftlicher Hinsicht zu ermöglichen. 2) Zwischenlagerung: Da für bestimmte edel- und sondermetallhaltige Abfälle bisher keine großtechnischen Behandlungs- bzw. Rückgewinnungsverfahren verfügbar, jedoch in der Entwicklung sind, ist der Ansatz der Zwischenlagerung dieser Abfälle, bis geeignete Recyclingverfahren bzw. -kapazitäten verfügbar sind, zu konkretisieren und zu prüfen. Dabei sind insbesondere auch EU-rechtliche Vorgaben zu berücksichtigen. 3) Behandlung und Recycling: Kriterien für einen ökologisch optimalen Rückgewinnungsgrad aus den Abfallströmen sind zu entwickeln und beispielhaft auf ausgewählte edel- und sondermetallhaltige Abfallströme anzuwenden. Diesem optimalen Grad ist der technisch realisierte bzw. absehbar realisierbare Rückgewinnungsgrad gegenüberzustellen. Es sind Konzepte und Optimierungsvorschläge zu entwickeln und zu bewerten. Die Themenbearbeitung ist durch Fachworkshops zum Informationsaustausch und zur Diskussion von Lösungsansätzen zu unterstützen. Anschließend ist vorzuschlagen, wie sich die zu den drei genannten Themenfeldern entwickelten Konzepte in der Recyclingwirtschaft ggf. implementieren und verankern lassen.

HeizKreis - Rückholung und Weiterverwendung seltener Erden Magnete - Kreislaufschließung bei Heizungspumpen

Marnet station

Location of the automated measuring stations (MARNET).

XRD of Cuttings of the KTB Pilot Hole VB1a

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \\\"mineralogical rock composition log\\\".

XRD of Cuttings of the KTB Pilot Hole HB1d

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Pilot Hole VB1a

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cuttings of the KTB Pilot Hole VB1

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \\\"mineralogical rock composition log\\\".

XRD of Cuttings of the KTB Pilot Hole HB1g

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

1 2 3