Die sächsische Landesforstverwaltung betreibt ein System standortsrepräsentativer Waldklimastationen. Diese bestehen zum Einen aus meteorologischen Freiflächenmessstationen in Waldgebieten und werden i.d.R. im Rahmen des Level II Programms der EU betrieben. Des weiteren werden sowohl in räumlicher Nähe zu den Freiflächenmesssystemen als auch an weiteren repräsentativen Standorten in Sachsen Bestandesmesssysteme betrieben. Diese befinden sich i.d.R. in waldbaulichen Versuchen des Landesforstpräsidiums zum Waldumbau. Hier werden neben meteorologischen Größen hauptsächlich Lichtverteilungen (PAR) und Bodenfeuchte-/ Bodensaugspannungsmessungen in Waldbeständen entsprechend der waldbaulichen Versuchsvarianten durchgeführt. Die Waldklimastationen sind als autonom und automatisch arbeitende Messsysteme ausgelegt, die über die Vernetzung einzelner Messmodule komplexe und räumlich weit verteilte Messanlagen bilden können. Die Datenübermittlung erfolgt automatisch per GSM Datenfunk. Die automatische Integration in die Datenbank erfolgt umgehend mit dem vorläufigen Status 'ungeprüft'.
Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.
Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.
A4.1 Ökosystemreaktionen und Rückkopplungen im Ökosystem-Atmosphäre-Austausch von CO2, H2O und VOCs in einem heterogenen Waldökosystem Um die Lücke zwischen der relativ kleinen Skala eines einzelnen Baumes und einem Waldbestand zu schließen, analysiert A4.1 den Austausch zwischen Ökosystem und Atmosphäre durch Eddy-Kovarianz Messungen von H2O, CO2 und dessen Isoflux (13CO2). Somit lassen sich die Flüsse auf einer integrierten Skala in ihre Komponenten (Ökosystematmung und Bruttoprimärproduktion) auftrennen. Darüber hinaus messen wir die Aufnahme und Freisetzung von VOC durch unsere Wälder und bringen sie mit wichtigen Ökosystemfunktionen in Verbindung, die stark auf Umweltveränderungen reagieren. A4.2 Entwicklung eines auf einem Interbandkaskadenlaser basierenden Messsystems zur Untersuchung des Austauschs zwischen Ökosystem und Atmosphäre von VOCs. Hier entwickeln wir erstmals eine optische spektroskopische Sensortechnologie, um VOCs mit Hilfe der durchstimmbaren Laserabsorptionsspektroskopie (TLAS) zu messen. Dies soll entlang der Konzentrationsgradienten am Messturm und in Verbindung mit Einzelblattküvetten (A3.2) erfolgen.
An den immissionsökologischen Dauerbeobachtungsstationen werden ganzjährig im regelmäßigen Zyklus (28-Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Von Mai bis November wird mit Methoden des aktiven Biomonitorings die Wirkung von Stoffeinträgen auf Pflanzen ermittelt. Die Wirkung des atmogenen Eintrags von Metallen auf Pflanzen wird mit der standardisierten Graskultur erhoben, die Wirkung organischer Schadstoffe (Dioxine/Furane, PAK, PCB) wird mit standardisierten Graskulturen und Grünkohl ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
An den Depositionsmessstationen werden ganzjährig im regelmäßigen Zyklus (28 Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
| Origin | Count |
|---|---|
| Bund | 1430 |
| Land | 199 |
| Wissenschaft | 44 |
| Zivilgesellschaft | 7 |
| Type | Count |
|---|---|
| Daten und Messstellen | 46 |
| Ereignis | 2 |
| Förderprogramm | 1265 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 1 |
| Text | 148 |
| Umweltprüfung | 29 |
| unbekannt | 177 |
| License | Count |
|---|---|
| geschlossen | 292 |
| offen | 1353 |
| unbekannt | 24 |
| Language | Count |
|---|---|
| Deutsch | 1555 |
| Englisch | 320 |
| Resource type | Count |
|---|---|
| Archiv | 27 |
| Bild | 6 |
| Datei | 26 |
| Dokument | 154 |
| Keine | 975 |
| Unbekannt | 9 |
| Webdienst | 7 |
| Webseite | 519 |
| Topic | Count |
|---|---|
| Boden | 1016 |
| Lebewesen und Lebensräume | 1247 |
| Luft | 956 |
| Mensch und Umwelt | 1662 |
| Wasser | 980 |
| Weitere | 1669 |