Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben Verfahrensunterlage Titel:Modellierung der Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) Autor:Poppei, J., Suter, D., Niemeyer, M. & Wilhelm, S. Erscheinungsjahr:2002 Unterlagen-Nr.:P 151 Revision:00 Unterlagenteil: Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -2- Zusammenfassung Die Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) wurde mit Hilfe des Rechenprogrammes GASGEN modelliert. Das Modell erlaubt die Prognose der zeitli- chen Gasentwicklung durch mikrobielle Prozesse und anaerobe Metallkorrosion. Der mikro- bielle Abbau der organischen Abfallbestandteile wird durch die Teilprozesse Denitrifikation, Sulfatreduktion, Fermentation und Methanogenese dargestellt. Es wird dabei zwischen der leicht abbaubaren Zellulose und schwer abbaubaren Materialien, wie z.B. Kunststoffen, un- terschieden. Die Gasentwicklung durch anaerobe Metallkorrosion wird vor allem durch das Eisen im Abfall bedingt. Die Inventars im ERAM, welche die gesamte Gasmenge bestimmen, sind mit Unsicherheiten behaftet. Auch die Geschwindigkeitskonstanten der verschiedenen Reaktionen hängen von vielen Faktoren ab und sind darum variabel. Um diese Variabilität abzudecken, erlaubt GASGEN eine probabilistische Modellierung der Gasentwicklung. Die Gasentwicklung in den verschiedenen Einlagerungsbereichen läuft prinzipiell ähnlich ab. Die anfänglich gebildeten Gasvolumen reflektieren die Bandbreiten der verschiedenen Pro- zesse und deren Kopplungen. Im Laufe der Zeit nehmen die Inventare der gasbildenden Abfallbestandteile ab und die Gasbildungsraten gehen zurück. Nach etwa 1 Mio. Jahren ist die Gasbildung weitgehend abgeschlossen. Das gesamte Gasvolumen wird durch Wasser- stoff dominiert, gefolgt von Methan und Stickstoff. Kohlendioxid bleibt nur wenig in der Gas- phase, da es durch Portlandit gebunden und durch die Methanogenese mikrobiell verarbeitet wird. Die Ergebnisse der probabilistischen Berechnungen gestatten eine statistische Interpretation der Ergebnisse. Auf Basis der Bandbreiten der Gesamtgasbildungsraten lassen sich mit Hilfe von vier voneinander unabhängigen Parametern potentielle Verläufe der Gasproduktion ge- nerieren. Als Kennwerte der Gasbildung dienen •die Bandbreiten der Gasbildungsraten zu repräsentativ frühen Zeiten, •die Bandbreiten der Gasbildungsraten zu repräsentativ späten Zeiten, • die Bandbreite der Gesamtgasmenge nach Abschluss der Gasproduktion und • der Anteil des Inventars an den Gasbildungsprozessen. Die auf diese Weise parametrisierten Gasproduktionsprozesse beschreiben den gesamten Variablenraum der Gasproduktion, der auf der Basis probabilistischer Ansätze mit feldspezi- fischen Inventarverteilungen berechnet wurde. Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -3- Inhaltsverzeichnis Zusammenfassung 1 Einleitung 2 Grundlagen 2.1 Metallkorrosion 2.2 Mikrowelle Abbauprozesse....... 2.2.1 Hydrolyse 2.2.2 Denitrifikation 2.2.3 Sulfatreduktion 2.2.4 Fermentation.. 2.2.5 Methanogenese 2.3 Ausfällungsreaktionen 2.3.1 Carbonatfällung (Carbonatisierung).... 2.3.2 Schwefelwasserstoff 3 Modell GASGEN 3.1 Modellkonzept 3.2 Mikrowelle Prozesse 3.3 Korrosion 3.4 Ausfällungsreaktionen und Methanogenese 4 Probabilistisches Modell 5 Stoffinventare und Modellparameter 5.1 Stoffinventare 5.2 Modellparameter ' 5.2.1 Metallkorrosion 5.2.2 Mikrowelle Prozesse 5.3 Verteilungsfunktionen und Korrelationen 5.4 Regelparameter 5.4.1 Edukt-Regler 5.4.2 Inhibitions-Regler 6 Resultate 7 Ableitung der Gasbildungsraten für die Sicherheitsanalyse 7.1 Parametrisierung der Gasbildungsraten 7.2 Berücksichtigung der Wahrscheinlichkeitsverteilung der Gasbildungsparameter 8 Referenzen Anhang A Anhang B Gesamtblattzahl: 2 ....4 4 ....4 5 5 5 6 6 7 7 7 8 9 9 9 10 10 12 13 13 17 18 18 20 21 22 22 25 31 31 35 40 52
Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben Verfahrensunterlage Titel:Modellierung der Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) Autor:Poppei, J., Suter, D., Niemeyer, M. & Wilhelm, S. Erscheinungsjahr:2002 Unterlagen-Nr.:P 151 Revision:00 Unterlagenteil: Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -2- Zusammenfassung Die Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) wurde mit Hilfe des Rechenprogrammes GASGEN modelliert. Das Modell erlaubt die Prognose der zeitli- chen Gasentwicklung durch mikrobielle Prozesse und anaerobe Metallkorrosion. Der mikro- bielle Abbau der organischen Abfallbestandteile wird durch die Teilprozesse Denitrifikation, Sulfatreduktion, Fermentation und Methanogenese dargestellt. Es wird dabei zwischen der leicht abbaubaren Zellulose und schwer abbaubaren Materialien, wie z.B. Kunststoffen, un- terschieden. Die Gasentwicklung durch anaerobe Metallkorrosion wird vor allem durch das Eisen im Abfall bedingt. Die Inventars im ERAM, welche die gesamte Gasmenge bestimmen, sind mit Unsicherheiten behaftet. Auch die Geschwindigkeitskonstanten der verschiedenen Reaktionen hängen von vielen Faktoren ab und sind darum variabel. Um diese Variabilität abzudecken, erlaubt GASGEN eine probabilistische Modellierung der Gasentwicklung. Die Gasentwicklung in den verschiedenen Einlagerungsbereichen läuft prinzipiell ähnlich ab. Die anfänglich gebildeten Gasvolumen reflektieren die Bandbreiten der verschiedenen Pro- zesse und deren Kopplungen. Im Laufe der Zeit nehmen die Inventare der gasbildenden Abfallbestandteile ab und die Gasbildungsraten gehen zurück. Nach etwa 1 Mio. Jahren ist die Gasbildung weitgehend abgeschlossen. Das gesamte Gasvolumen wird durch Wasser- stoff dominiert, gefolgt von Methan und Stickstoff. Kohlendioxid bleibt nur wenig in der Gas- phase, da es durch Portlandit gebunden und durch die Methanogenese mikrobiell verarbeitet wird. Die Ergebnisse der probabilistischen Berechnungen gestatten eine statistische Interpretation der Ergebnisse. Auf Basis der Bandbreiten der Gesamtgasbildungsraten lassen sich mit Hilfe von vier voneinander unabhängigen Parametern potentielle Verläufe der Gasproduktion ge- nerieren. Als Kennwerte der Gasbildung dienen •die Bandbreiten der Gasbildungsraten zu repräsentativ frühen Zeiten, •die Bandbreiten der Gasbildungsraten zu repräsentativ späten Zeiten, • die Bandbreite der Gesamtgasmenge nach Abschluss der Gasproduktion und • der Anteil des Inventars an den Gasbildungsprozessen. Die auf diese Weise parametrisierten Gasproduktionsprozesse beschreiben den gesamten Variablenraum der Gasproduktion, der auf der Basis probabilistischer Ansätze mit feldspezi- fischen Inventarverteilungen berechnet wurde. Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -3- Inhaltsverzeichnis Zusammenfassung 1 Einleitung 2 Grundlagen 2.1 Metallkorrosion 2.2 Mikrowelle Abbauprozesse....... 2.2.1 Hydrolyse 2.2.2 Denitrifikation 2.2.3 Sulfatreduktion 2.2.4 Fermentation.. 2.2.5 Methanogenese 2.3 Ausfällungsreaktionen 2.3.1 Carbonatfällung (Carbonatisierung).... 2.3.2 Schwefelwasserstoff 3 Modell GASGEN 3.1 Modellkonzept 3.2 Mikrowelle Prozesse 3.3 Korrosion 3.4 Ausfällungsreaktionen und Methanogenese 4 Probabilistisches Modell 5 Stoffinventare und Modellparameter 5.1 Stoffinventare 5.2 Modellparameter ' 5.2.1 Metallkorrosion 5.2.2 Mikrowelle Prozesse 5.3 Verteilungsfunktionen und Korrelationen 5.4 Regelparameter 5.4.1 Edukt-Regler 5.4.2 Inhibitions-Regler 6 Resultate 7 Ableitung der Gasbildungsraten für die Sicherheitsanalyse 7.1 Parametrisierung der Gasbildungsraten 7.2 Berücksichtigung der Wahrscheinlichkeitsverteilung der Gasbildungsparameter 8 Referenzen Anhang A Anhang B Gesamtblattzahl: 2 ....4 4 ....4 5 5 5 6 6 7 7 7 8 9 9 9 10 10 12 13 13 17 18 18 20 21 22 22 25 31 31 35 40 52
Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben Verfahrensunterlage Titel:Modellierung der Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) Autor:Poppei, J., Suter, D., Niemeyer, M. & Wilhelm, S. Erscheinungsjahr:2002 Unterlagen-Nr.:P 151 Revision:00 Unterlagenteil: Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -2- Zusammenfassung Die Gasentwicklung im Endlager für radioaktive Abfälle Morsleben (ERAM) wurde mit Hilfe des Rechenprogrammes GASGEN modelliert. Das Modell erlaubt die Prognose der zeitli- chen Gasentwicklung durch mikrobielle Prozesse und anaerobe Metallkorrosion. Der mikro- bielle Abbau der organischen Abfallbestandteile wird durch die Teilprozesse Denitrifikation, Sulfatreduktion, Fermentation und Methanogenese dargestellt. Es wird dabei zwischen der leicht abbaubaren Zellulose und schwer abbaubaren Materialien, wie z.B. Kunststoffen, un- terschieden. Die Gasentwicklung durch anaerobe Metallkorrosion wird vor allem durch das Eisen im Abfall bedingt. Die Inventars im ERAM, welche die gesamte Gasmenge bestimmen, sind mit Unsicherheiten behaftet. Auch die Geschwindigkeitskonstanten der verschiedenen Reaktionen hängen von vielen Faktoren ab und sind darum variabel. Um diese Variabilität abzudecken, erlaubt GASGEN eine probabilistische Modellierung der Gasentwicklung. Die Gasentwicklung in den verschiedenen Einlagerungsbereichen läuft prinzipiell ähnlich ab. Die anfänglich gebildeten Gasvolumen reflektieren die Bandbreiten der verschiedenen Pro- zesse und deren Kopplungen. Im Laufe der Zeit nehmen die Inventare der gasbildenden Abfallbestandteile ab und die Gasbildungsraten gehen zurück. Nach etwa 1 Mio. Jahren ist die Gasbildung weitgehend abgeschlossen. Das gesamte Gasvolumen wird durch Wasser- stoff dominiert, gefolgt von Methan und Stickstoff. Kohlendioxid bleibt nur wenig in der Gas- phase, da es durch Portlandit gebunden und durch die Methanogenese mikrobiell verarbeitet wird. Die Ergebnisse der probabilistischen Berechnungen gestatten eine statistische Interpretation der Ergebnisse. Auf Basis der Bandbreiten der Gesamtgasbildungsraten lassen sich mit Hilfe von vier voneinander unabhängigen Parametern potentielle Verläufe der Gasproduktion ge- nerieren. Als Kennwerte der Gasbildung dienen •die Bandbreiten der Gasbildungsraten zu repräsentativ frühen Zeiten, •die Bandbreiten der Gasbildungsraten zu repräsentativ späten Zeiten, • die Bandbreite der Gesamtgasmenge nach Abschluss der Gasproduktion und • der Anteil des Inventars an den Gasbildungsprozessen. Die auf diese Weise parametrisierten Gasproduktionsprozesse beschreiben den gesamten Variablenraum der Gasproduktion, der auf der Basis probabilistischer Ansätze mit feldspezi- fischen Inventarverteilungen berechnet wurde. Colenco-Bericht 4651/76 Modellierung der Gasentwicklung im Endlager für Radioaktive Abfälle Morsleben (ERAM) -3- Inhaltsverzeichnis Zusammenfassung 1 Einleitung 2 Grundlagen 2.1 Metallkorrosion 2.2 Mikrowelle Abbauprozesse....... 2.2.1 Hydrolyse 2.2.2 Denitrifikation 2.2.3 Sulfatreduktion 2.2.4 Fermentation.. 2.2.5 Methanogenese 2.3 Ausfällungsreaktionen 2.3.1 Carbonatfällung (Carbonatisierung).... 2.3.2 Schwefelwasserstoff 3 Modell GASGEN 3.1 Modellkonzept 3.2 Mikrowelle Prozesse 3.3 Korrosion 3.4 Ausfällungsreaktionen und Methanogenese 4 Probabilistisches Modell 5 Stoffinventare und Modellparameter 5.1 Stoffinventare 5.2 Modellparameter ' 5.2.1 Metallkorrosion 5.2.2 Mikrowelle Prozesse 5.3 Verteilungsfunktionen und Korrelationen 5.4 Regelparameter 5.4.1 Edukt-Regler 5.4.2 Inhibitions-Regler 6 Resultate 7 Ableitung der Gasbildungsraten für die Sicherheitsanalyse 7.1 Parametrisierung der Gasbildungsraten 7.2 Berücksichtigung der Wahrscheinlichkeitsverteilung der Gasbildungsparameter 8 Referenzen Anhang A Anhang B Gesamtblattzahl: 2 ....4 4 ....4 5 5 5 6 6 7 7 7 8 9 9 9 10 10 12 13 13 17 18 18 20 21 22 22 25 31 31 35 40 52
Das Projekt "Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China" wird vom Umweltbundesamt gefördert und von Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Meteorologie und Klimaforschung, Teilinstitut für Atmosphärische Umweltforschung durchgeführt. Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.
Das Projekt "Computergestuetzte Prozessregelung einer UASB-Biogasanlage" wird vom Umweltbundesamt gefördert und von Berliner Hochschule für Technik, Verfahrens- und Umwelttechnik, Studienschwerpunkt Bioverfahrenstechnik durchgeführt. Ein UASB-Laborreaktor (Upflow Anaerobic Sludge Blanket-Reaktor) wird zur CSB-Reduktion von Ruebenmelasseschlempe eingesetzt. Ziel ist, durch Einsatz computergestuetzter Regelstrategien eine hohe Prozessstabilitaet und konstante CSBAblaufwerte zu gewaehrleisten. Mit Hilfe von Stoerfallsimulationen wird die Eignung der hier eingesetzten Regelung ueberprueft. Der CSB im Ablauf bzw. der Methanausbeutekoeffizient werden als Regelgroesse und die Verweilzeit als Stellgroesse gewaehlt. Gefahren werden die Testreihen mit Raumbelastungen bis zu 20 g CSB/l und CSB-Zulaufwerten bis zu 20.000 mg O2/l, wobei CSB-Ablaufwerte von zunaechst 2.500 mg O2/l angstrebt werden. Der Einfluss des Stoerfalls auf die mikrobielle Aktivitaet in den vier Stufen des anaeroben Abbaus, Hydrolyse, Acidogenese, Acetogenese sowie Methanogenese, wird ueber die Abgas- und Abwasseranalyse erfasst und interpretiert. In Zukunft sollen die Regelguete durch Verkuerzung der Messintervalle der Ist-CSB-Werte im Wasserzu- und ablauf mit Hilfe kontinuierlicher CSB-Bestimmung und Messwerterfassung verbessert werden sowie einzelne Regelalgorithmen sowie andere Regelstrategien fuer komplexe Regelkreise ueberprueft werden.
Das Projekt "Aufklärung der mikrobiellen Nitratumsetzung in einem Süßwasserhabitat bei Anwesenheit von Methan, Nitrat und Ammonium: Koppelung von n-damo (Nitrat/Nitrit-abhängige anaerobe Methanoxidation) und Anammox (anaerobe Oxidation von Ammonium)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Ingenieurfakultät Bau Geo Umwelt, Lehrstuhl für Hydrogeologie durchgeführt. In diesem Projekt wollen wir in einem Süßwasserhabitat die Koppelung der nitratabhängigen Methanoxidation (n-damo) mit dem Anammox Prozess nachweisen. Messungen der stabilen Isotope im Methan, Nitrat, Nitrit, Ammonium und DIC und molekularbiologische Methoden sollen helfen, diese Prozesse zu entschlüsseln. Zudem wollen wir klären, wie die Erkenntnis von einströmendem Grundwasser in das Habitat (Interaktion zwischen Grundwasser und Seewasser) zu erklären ist, dass die für die Prozesse (n-damo, Anammox, Methanogenese) benötigten stabilen Umwelt- bzw. anoxischen Redoxbedingungen vorliegen.
Das Projekt "Etablierung einer nachhaltigen methanogenen Kohlendioxidreduktion in bioelektrochemischen Systemen und Identifizierung kinetischer und thermodynamischer Restriktionen." wird vom Umweltbundesamt gefördert und von Ruhr-Universität Bochum, Institut für Infrastruktur und Umwelt, Lehrstuhl für Siedlungswasserwirtschaft und Umwelttechnik durchgeführt. Bioelektrochemische Systeme ermöglichen die Speicherung elektrischer Energie in Form von Methan (CH4), jenem transportablen Gas, dessen spätere energetische Verwertung bereits von einer vorhandenen Erdgasinfrastruktur profitieren kann. In den genannten Bioreaktoren stellt eine Kathode Elektronen für die Reduktion von Kohlendioxid (CO2) zu Methan (CH4) über ein anaerobes Mikrobiom bereit. Die Ziele dieses Vorhabens können in zwei Bereiche unterteilt werden: i) Entwicklung und Untersuchung von Fe4.5Ni4.5S8-Elektroden, die die katalytischen Eigenschaften wichtiger Enzyme der methanogenen Prozesse imitieren; und ii) Verwendung der Kohlenstoffisotopenanalyse zur Unterstützung einer umfassenden Prozessanalyse und zur Simulation der CH4-Bildung aus CO2 in Bioreaktoren. Die Hypothese für die Untersuchungen zu den Isotopeneffekten ist, dass bei der CH4-Bildung unter Verwendung direkter Elektronenübertragungswege die 13C-Fraktionierung von der verfügbaren freien Energie für den methanogenen Stoffwechsel abhängig ist, analog zur hydrogenotrophen Methanogenese. Eine variable 13C-Fraktionierung wird auch bei autotrophen CO2-Fixierungsprozessen durch Bakterien, Archaeen und Algen beobachtet. Mit Hilfe dieser Hypothese werden wir eine Modellstruktur auf Basis der 13C-Analysedaten zur detaillierten Beschreibung der Produktbildungserträge mit thermodynamisch abhängiger Wachstumskinetik und detaillierter Berechnung der stabilen Kohlenstoffisotopenfraktionierung entwickeln. Dieses Modell soll für den methanogenen CO2-Reduktionsweg mit verschiedenen Elektronendonatoren gelten. Daher werden Gasdiffusionskathoden eingesetzt, um eine sofortige Änderung der Elektronendonatorquelle zu ermöglichen, durch eine Begasung mit Wasserstoff (H2) oder durch die Bereitstellung eines elektrischen Stroms. Letztendlich werden durch die 13C-basierte thermodynamische Analyse ideale Bedingungen für den Vergleich des neuen Fe4.5Ni4.5S8-Elektroden mit Benchmark-Elektroden geschaffen. Wir gehen davon aus, dass die funktionellen biomimetischen Hydrogenase und CO-Dehydrogenase Modelle aus den Fe4.5Ni4.5S8-Elektroden die methanogene CO2-Reduktion begünstigen können, was aus den thermodynamischen Randbedingungen direkt abgeleitet werden kann. Die Untersuchungen werden parallele biologische Experimente mit offenen Mikrobiomen und Reinkulturen umfassen. Assays mit Methanogenen aus der Gattung Methanothrix sind vielversprechend für eine direkte Bestimmung der 13C-Fraktionierung bei der H2-freien Methanogenese aus CO2, da diese die CO2-Reduktion nur durch direkte Elektronenübertragungsmechanismen durchführen können.
Das Projekt "TP2: Untersuchungen zum Einfluss von Algen oder Algenextrakte auf die Methanogenese im Pansen" wird vom Umweltbundesamt gefördert und von Friedrich-Löffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Institut für Tierernährung durchgeführt. Algen enthalten Substanzen, welche die Methanogenese im Pansen der Wiederkäuer inhibieren können. Das wissenschaftliche Hauptziel des hier beantragten Projektes besteht in der Identifikation und Untersuchung von regional (Ostseeraum) verfügbaren Algenarten, die die für eine Methanemissionsreduktion erforderlichen Inhaltsstoffspektren aufweisen. Mittels in vitro Experimenten mit der Pansensimulation Rusitec sollen zuvor die durch die Projektpartner identifizierten Algenarten hinsichtlich ihres methanreduzierenden Effektes getestet werden. Ergeben sich aus diesen Untersuchungen Hinweise auf eine Methanreduktion soll in einem Fütterungsexperiment mit Milchkühen der Rasse Deutsche Holstein diese Wirkung ebenfalls in vivo untersucht werden. Dabei soll nicht nur die Methanemission der Tiere quantifiziert werden, sondern auch Leistungs- und Tiergesundheitsparameter sowie Parameter des Pansen- und Energiestoffwechsels betrachtet werden.
Das Projekt "Abbau von N-Methylverbindungen zu Methan, Kohlendioxid und Ammoniak" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Institut für Mikrobiologie durchgeführt. Es werden Mikroorganismen gesucht und untersucht, welche in Mischkultur mit Methanosarcina barkeri Verbindungen wie Cholin oder Betain in Methan, Kohlendioxid und Ammoniak umwandeln.
Das Projekt "Zooplankton assoziierte Methanproduktion" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. Methan ist ein bedeutendes Treibhausgas, das einen starken Einfluss auf die Klimaentwicklung der Erde nimmt. Zurzeit sind das Wissen um die verschiedenen Methanquellen und deren atmosphärischer Einfluss noch äußerst lückenhaft. Eine Quelle, die hier von besonderer Wichtigkeit sein könnte, ist die mikrobielle Methanproduktion innerhalb des Darms bestimmter Zooplanktonorganismen bzw. der von ihnen ausgeschiedenen Kotpillen. Diese Quelle ist hauptsächlich in der oberen sauerstoffhaltigen Wassersäule angesiedelt und kann somit einen unmittelbaren Einfluss auf den Methanfluss zwischen Ozean und Atmosphäre nehmen. In unserem Projekt stellen wir die Hypothese auf, dass in hochproduktive Regionen, wie z.B. in Randmeeren, diese Zooplankton-basierte Methanproduktion besonders stark ausgeprägt ist. Des Weiteren vermuten wir, dass die zeitweise in der Ostsee beobachtete subthermokline Methananomalie durch diese Methanquelle hervorgerufen wird. Im ZooM-Projekt werden wir deshalb die Zooplankton-assoziierte Methanproduktion im Modellgebiet Ostsee mit Hilfe eines multidisziplinären Ansatzes untersuchen, indem wir die Fachgebiete Methanchemie, Mikrobiologie und Zooplanktologie konzertiert einsetzen. Im Detail wollen wir die folgenden Schlüsselfragen beantworten: (1) Ist die subthermokline Methananomalie ein verbreitetes Phänomen in der Ostsee und können wir saisonale und regionale Unterschiede in ihrer Ausprägung identifizieren? (2) Besitzt die Zooplankton-assoziierte Methanproduktion das Potential die beobachtete Methananomalie auszubilden und wie beeinflussen Copepodenarten und Umweltbedingungen (wie die Nahrungszusammensetzung) die Methanproduktion? (3) Welche methanogenen Mikroorganismen sind in die subthermokline Methanproduktion im Copepoden-Darm und ihren Kotpillen involviert und lassen sich Unterschiede der beteiligten methanogenen Gemeinschaften und deren Aktivität ausmachen?
Origin | Count |
---|---|
Bund | 146 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 144 |
Text | 2 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 144 |
Language | Count |
---|---|
Deutsch | 142 |
Englisch | 28 |
Resource type | Count |
---|---|
Keine | 97 |
Webseite | 50 |
Topic | Count |
---|---|
Boden | 119 |
Lebewesen & Lebensräume | 147 |
Luft | 106 |
Mensch & Umwelt | 147 |
Wasser | 109 |
Weitere | 146 |