API src

Found 159 results.

Related terms

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Biogeochemie.Böden sind als Standort für Pflanzen und Lebensraum für eine Vielzahl von Mikroorganismen ein integraler Bestandteil von Ökosystemen. Das Kernprojekt Boden stellt grundlegende Daten über Bodeneigenschaften und Bodenfunktionen bereit. Wir organisieren zudem koordinierte Bodenprobenahmen auf den Experimentier-Flächen (EP) und beteiligen uns an der Synthese in den Biodiversitäts Exploratorien (BE). Im Vordergrund steht dabei die Fragestellung, wie sich Landnutzung und Biodiversität auf den Eintrag, die Speicherung und die Stabilität von Kohlenstoff und Nährstoffen im Boden auswirken. In der vergangenen Projektphase der BE haben wir 2017 die koordinierte Bodenprobenahme auf allen EP wiederholt und grundlegende Bodenparameter für weitere Projekte zur Verfügung gestellt. Wir haben zudem das Monitoring des Streufalls auf allen Waldflächen fortgesetzt. Wir konnten zeigen, dass der Streufall in den ungenutzten Wäldern größer als in genutzten Wäldern war, wozu insbesondere die größere Menge an Zweigen, Ästen und Früchten im ungenutzten Wald beitrug. Die Umsatzzeiten von Kohlenstoff in der organischen Auflage zeigen, dass diese sowohl durch den Standort (z.B. pH Wert, Nährstoffverfügbarkeit) als auch durch die Qualität der Streu beeinflusst werden. Der Abbau von organischer Substanz wurde auf allen Experimentier-Flächen in situ durch Messung der Bodenatmung bestimmt. Durch die Trockenheit im Sommer 2018 waren die gemessenen Bodenatmungsraten gering. Trotzdem konnten im Wald Effekte der Untersuchungsregion, der Landnutzung und der Hauptbaumart nachgewiesen werden. Die Nährstoffauswaschung wurde mit Austauscherharzen im Jahr 2018/19 kumulativ bestimmt, so dass die Analyse noch nicht abgeschlossen ist. In der kommenden Projektphase werden wir das Bodenmonitoring auf allen EP fortsetzen. In enger Kooperation mit anderen Projekten werden wir eine weitere Bodenprobenahme auf allen 300 EP organisieren. Diese Probenahme wird dann auch die neu etablierten Wald- und Grünlandexperimente einschließen. Auf allen Flächen werden wir grundlegende Bodeneigenschaften und Indikatoren für die Bodenqualität bestimmen, auch um die Vergleichbarkeit der neuen Versuchsflächen mit den bisherigen Untersuchungsflächen (den Kontrollflächen) sicherzustellen. Wir werden das Bodenprobenarchiv sowie das Streufall-Monitoring in den BE fortführen. Da die zentrale Frage des Waldexperiments ist, inwiefern ein Lückenschlag durch geänderte Resourcenverfügbarkeit die Biodiversität beeinflusst, werden wir in den neu etablierten Lücken sowohl den Streueintrag, als auch die Nährstoffverfügbarkeit im Boden bestimmen. Wir werden überprüfen, ob diese Änderungen in der Nährstoffverfügbarkeit durch den Abbau von organischer Bodensubstanz bedingt werden. Dazu werden wir die Bodenatmung, Enzymaktivitäten, den Streuabbau und die Aktivität der Bodenfauna bestimmen. Zusätzlich zu unseren bisherigen Synthese-Aktivitäten werden wir dann zur gemeinsamen Bewertung des Waldexperimentes beitragen.

Wegbereiter Wiederbewaldung: Regionales Flächenmanagement zur Entwicklung multifunktionaler Wälder auf gestörten Fichtenflächen, Teilprojekt 4

Das Projekt "Wegbereiter Wiederbewaldung: Regionales Flächenmanagement zur Entwicklung multifunktionaler Wälder auf gestörten Fichtenflächen, Teilprojekt 4" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bayreuth, Zentrum für Ökologie und Umweltforschung, Lehrstuhl Ökologie der Pilze.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Einfluss von Landnutzungsintensität auf Methanumsetzende Mikroorganismen in Grünland- und Waldböden

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Einfluss von Landnutzungsintensität auf Methanumsetzende Mikroorganismen in Grünland- und Waldböden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V. - Programmbereich 1 Landschaftsprozesse - Arbeitsgruppe Mikrobielle Biogeochemie.Methan (CH4) ist, neben CO2 das zweitwichtigste Treibhausgas (GHG). Die aktuelle atmosphärische Methankonzentration steigt seit 2007, vermutlich aufgrund von anthropogenem Einfluss bedingt durch intensivierte landwirtschaftliche Lebensmittelproduktion, stark an. Eine wichtige Aufgabe wird es zukünftig sein, die heutige Intensität der Landwirtschaft produktiv, aber auch gleichzeitig klimaneutral zu gestalten um dem Lebensmittelbedarf einer wachsenden Weltbevölkerung zu entsprechen. Zwei fundamental unterschiedliche Gruppen von Prokaryoten sind für den CH4 Umsatz in Böden verantwortlich. Methanotrophe Bakterien (MOB) wirken durch die Oxidation von atmosphärischem CH4, und von CH4, das durch methanogene Archaea im Boden produziert wurde bevor es die Atmosphäre erreicht, als biologische Filter. Derzeit ist nicht geklärt, inwieweit sich Unterschiede in der Landnutzungsintensität auf die funktionelle Diversität und die Aktivität dieser im Methanzyklus wichtigen Mikroorganismengruppen auswirken. Erste Untersuchungen zeigen einen negativen Effekt von hoher Nutzungsintensität auf die Methanaufnahme von gut belüfteten Grünlandböden. Allerdings ist wenig bekannt über den Einfluss der Landnutzungsintensität auf die räumliche und zeitliche Dynamik methanotropher und methanogener Bodenmikroorganismen. Wir haben ein interdisziplinäres Konsortium aus Experten der Bodenkunde, der Mikrobiologie und der Metagenomik mit komplementären Expertisen zu bodenbürtigen Treibhausgasen, methanotrophen und methanogenen Prokaryoten zusammengestellt. Durch die Kombination von aktuellen Methoden wollen wir die Biodiversitätsexploratorien als ideale Plattform nutzen, um die Frage zu beantworten, inwieweit Landnutzungsintensität die funktionelle Diversität und Aktivität von Methanumsetzenden Mikroorganismen beeinflusst.Die zugrundeliegenden Hypothesen wollen wir in zwei Arbeitspaketen (WP) überprüfen. Innerhalb von WP1 wollen wir untersuchen, welche Auswirkungen die Landnutzungsintensität von Grünland und Waldflächen auf die Methanflüsse und die Abundanz und Diversität von methanotrophen Bakterien (quantitative PCR) hat, und inwieweit dies von Umweltfaktoren abhängt. In WP2 wollen wir die jahres- und tageszeitliche Dynamik der Aktivität von methanogenen und methanotrophen Prokaryoten (mittels Metatranskriptomik und Methanfluss Messungen) untersuchen, und inwieweit diese durch Grünlandnutzungsintensität beeinflusst wird. Hierbei wird unser Fokus auf dem Vergleich auf Grünlandflächen auf wasserbeeinflussten Histosolen und gut durchlüfteten Leptosolen liegen. Unser Projekt BE-CH4 wird zu dem dringend benötigten Wissen um den Einfluss von Grünland- und Waldnutzungsintensität auf die räumliche und zeitliche Dynamik von den Methanfluss aus, und in Böden bedingenden Mikroorganismen beitragen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der Einfluss von Landnutzungsintensitäten auf die Diversität von Viren in Grünlandböden und deren Bedeutung als Steuergrösse für die Zusammensetzung mikrobieller Populationen und deren Funktion (KiWion)

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der Einfluss von Landnutzungsintensitäten auf die Diversität von Viren in Grünlandböden und deren Bedeutung als Steuergrösse für die Zusammensetzung mikrobieller Populationen und deren Funktion (KiWion)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltmikrobiologie.Unser Wissen zur Ökologie und Bedeutung von Mikroorganismen in Böden ist umfassend. Dies gilt im Gegensatz dazu nicht für die Ökologie der Viren. Erkenntnisse dazu hinken dem Kenntnisstand aus aquatischen Lebensräumen weit hinterher. Böden beherbergen eine große Anzahl an Viren und das Viren - Wirt Verhältnis liegt meist deutlich über jenem in aquatischen Systemen. Unterschiede in den Virenpopulationen können teilweise auf unterschiedliche Bodencharakteristika (pH, Wassergehalt, Anteil an organischem Material) erklärt werden. Dies lässt den Schluss zu, dass Unterschiede in der Landnutzung entsprechend die Virenabundanz als auch Viren - Wirt Interaktionen beeinflussen. In Böden tragen bis zu 68% aller Bakterien induzierbare Prophagen, ein Hinweis darauf, dass die Heterogenität im Boden und die ungleiche Verteilung der Mikroorganismen eine lysogene Vermehrung von Viren selektiert. Dies hat zur Folge, dass der Austausch von genetischer Information zwischen Virus und Wirt vorwiegend durch Transduktion stattfindet. Bis dato analysierte Virenmetagenome aus dem Boden bestanden bis zu 50% aus transduzierten Genen prokaryotischen Ursprungs. Obwohl davon ausgegangen werden kann, dass Viren im Boden, wie für aquatische Lebensräume gezeigt, einen signifikanten Einfluss auf die räumliche und zeitliche Dynamik ihrer Wirte (Killing the Winner Hypothese) und deren kontinuierliche Anpassung (Red Queen Hypothese), wichtige Ökosystemfunktionen und biogeochemische Prozesse haben, kennen wir die Art und Häufigkeit der Interaktionen nicht und empirische Daten fehlen. Wir postulieren, dass Transduktion eine wichtige Rolle für die Resilienz von Böden unter intensiver Landnutzung spielt, da in diesen Böden i) die mikrobielle Diversität vergleichsweise niedrig ist, was zu einer erhöhten Sensitivität gegenüber Veränderungen in den Umweltbedingungen führt. Andererseits, ii) hat die durch Düngung erhöhte spezifische Aktivität von Mikroorganismen eine erhöhte Transduktionsrate zur Folge, da Viren für ihre Vervielfältigung auf metabolisch aktive Wirte angewiesen sind. Um unsere Hypothese zu überprüfen, werden wir an 150 Standorten der Biodiversitäts-Exploratorien und im Detail an einer Auswahl an Grünlandstandorten mit unterschiedlicher Intensität der Bewirtschaftung Untersuchungen durchführen. Analysiert wird die Beziehung zwischen Virenabundanzen und VBRs mit der Bewirtschaftung, der Vegetationsperiode und den vorherrschenden Umweltbedingungen. Zusätzlich untersuchen wir mit Hilfe moderner molekularer Methoden die Zusammensetzung der Virengemeinschaften und ihre Diversität, sowie viren-assoziierte Funktionen prokaryotischen Ursprungs. Experimente zu Virus-Wirt Interaktionen und die Analyse von CRISPR like structures in den prokaryotischen Wirten werden Erkenntnisse zu der Ökologie bakterieller Gemeinschaften liefern. Nicht zuletzt werden wir Viren von abundanten Bodenbakterien (z.B. Pseudomonaden) für vergleichende Genomanalysen und Kreuzinfektionsversuche isolieren.

Identifizierung mikrobieller Systemzustandsindikatoren und Entwicklung von Prozessmodellen zur störungsfreien und bedarfsgerechten Prozesssteuerung in Biogasanlagen

Das Projekt "Identifizierung mikrobieller Systemzustandsindikatoren und Entwicklung von Prozessmodellen zur störungsfreien und bedarfsgerechten Prozesssteuerung in Biogasanlagen" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Agrartechnik und Bioökonomie e.V..Gesamtziel des Vorhabens ist die Identifizierung und Verifizierung mikrobieller Systemzustandsindikatoren und die Entwicklung von darauf basierenden Prozessmodellen zur störungsfreien und bedarfsgerechten Prozesssteuerung. Damit wird die zukünftig verstärkte Nutzbarkeit von Reststoffen unterstützt, die oft schwer vergärbar und/oder prozesskritisch sind und in wechselnder Menge und Zusammensetzung anfallen. Um dieses Ziel zu erreichen, werden in Laborfermentern gezielt und systematisch praxisrelevante Prozessvariationen (inkl. typische Stresssituationen) für unterschiedlich widerstandsfähige Biogas-Mikrobiome herbeigeführt, um mikrobielle Indikatoren für spezifische Systemzustände und deren Stresstoleranzpotenzial gegenüber wirkenden und stetig wechselnden Umweltfaktoren zu identifizieren. Im Ergebnis sollen Schwellenwerte für kritische Prozessbedingungen festgestellt werden, unter denen sich die Indikatorarten bzw. Indikatorgruppen anreichern oder reduzieren/verschwinden. Damit sollen die Voraussetzungen geschaffen werden, um einfache, schnelle und kostengünstige mikrobiologische Nachweisverfahren entwickeln und anwenden zu können. Über Modelle zur zeitlichen Entwicklung der mikrobiellen Diversität, insbesondere mikrobieller Systemzustandsindikatoren sollen Vorhersagen getroffen werden, wie mikrobielle Gemeinschaften auf Prozessvariationen reagieren, um Handlungsempfehlungen zur Vermeidung von Prozessstörungen im Praxisbetrieb abzuleiten.

BiodivMon: Beobachtung der mikrobiellen Diversität im Torf anhand von Vegetationseigenschaften und Bedeutung für die Kohlenstoffdynamik in europäischen Moorgebieten (MiDiPeat)

Das Projekt "BiodivMon: Beobachtung der mikrobiellen Diversität im Torf anhand von Vegetationseigenschaften und Bedeutung für die Kohlenstoffdynamik in europäischen Moorgebieten (MiDiPeat)" wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.

Zusammenhang zwischen Ernährungsweise und ökophysiologischer Nischenweite und deren Einfluss auf das Verbreitungsmuster chrysomonader Flagellaten

Das Projekt "Zusammenhang zwischen Ernährungsweise und ökophysiologischer Nischenweite und deren Einfluss auf das Verbreitungsmuster chrysomonader Flagellaten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Campus Essen, Fakultät Biologie, Arbeitsgruppe Biodiversität.Die Verknüpfung zwischen der Ökologie von Organismen und deren Verteilungsmuster sowie die Verallgemeinerbarkeit dieser Zusammenhänge sind eine essentielle Basis für das Verständnis der funktionellen Dynamik von Ökosystemen und deren assoziierter Biodiversität. Das Zusammenspiel zwischen Biodiversität und Ökosystemfunktion wirft die Frage auf in wieweit die funktionelle Differenzierung von Taxa deren Verteilungsmuster bedingt. Einer der offensichtlichsten funktionellen Unterschiede zwischen Organismen ist die Differenzierung der Ernährungsstrategien in heterotrophe, mixotrophe und phototrophe Organismen. Mikrobielle Eukaryoten sind aufgrund ihrer überwältigenden Diversität und funktionellen Differenziertheit besonders geeignet, um solche übergeordneten Fragestellungen anzugehen. Chrysomonaden (Chrysophyceen) sind hier besonders geeignet, da sie weit verbreitet sind und zu den dominanten Organismengruppen in einer Vielzahl von Habitaten gehören. Verschiedenste Ernährungsstrategien sind realisiert und Chrysomonaden der verschiedenen Ernährungstypen koexistieren in vielen Habitaten. Zudem sind die Chrysomonaden eine ökologisch vergleichsweise gut untersuchte Organsimengruppe mit vielen Modellarten für ökologische und ökophysiologische Fragestellungen. Heterotrophie evolvierte mehrfach innerhalb der Goldalgen. In diesem Projekt testen wir die Hypothese, dass heterotrophe Taxa im Vergleich zu phototrophen und mixotrophen Taxa im Allgemeinen eine größere Toleranz im Hinblick auf abiotische Faktoren haben. Damit verknüpft testen wir die Hypothese, dass sich die Verteilungsmuster von heterotrophen, mixotrophen und phototrophen Chrysomonaden unterscheiden und eher mit deren Ökologie als mit deren Phylogenie korrelieren. In einem ersten Arbeitspaket charakterisieren wir das Wachstum verschiedener Arten als Funktion der Futter- und Nährstoffkonzentration, der Futterqualität und der Beleuchtungsverhältnisse. Auf dieser Basis werden wir dann die Nischenweite vergleichend untersuchen und die Hypothese testen, dass sich diese Nischenweite systematisch zwischen Taxa verschiedener Ernährungstypen unterscheidet. Diese ökophysiologischen Untersuchungen ergänzen wir mit Analysen der Verbreitungsmuster. Der Fokus liegt dabei auf der regionalen Verbreitung unter Berücksichtigung der Verschiedenheit in Bezug auf die abiotischen Umweltfaktoren. Insbesondere nehmen wir an, dass phototrophe Chrysomonaden eine stärker eingeengt Verbreitung in Bezug auf die abiotischen Umweltfaktoren aufweisen als die heterotrophen Taxa. Ebenso erwarten wir eine stärker ausgeprägte Saisonalität bei phototrophen Taxa als bei heterotrophen. Zusammengenommen bieten die geplanten Analysen, basierend auf der exemplarischen Analyse der Verbreitungsmuster und der ökophysiologischen Nischenweite von Chrysomonaden, eine fundierte Basis für ein Verständnis der Zusammenhänge zwischen der funktionellen Diversität von Ökosystemen und deren assoziierter Biodiversität.

Steigerung der Wirksamkeit antagonistischer Mikroorganismen für die Bekämpfung bodenbürtiger Pilze und pflanzenparasitärer Nematoden

Das Projekt "Steigerung der Wirksamkeit antagonistischer Mikroorganismen für die Bekämpfung bodenbürtiger Pilze und pflanzenparasitärer Nematoden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Landwirtschaftliche Fakultät, Institut für Pflanzenkrankheiten.Der Wurzelgallennematode Meloidogyne javanica und der Erreger der Fusariumwelke, Fusarium oxysporum f.sp. lycopersici sind bedeutende Welkeerreger im Gemüsebau des Mittleren Ostens wie auch weltweit. In der Praxis treten beide Erreger häufig gemeinsam auf und verursachen synergistische Ertragsverluste. Die Bekämpfung beider Pathogene gestaltet sich als äußerst schwierig, wobei eine völlige Ausschaltung beider Pathogene in der Regel kaum möglich ist. In den vergangenen Jahren wurde das durch die beiden Pathogene hervorgerufene Welkesyndrom primär durch Bodenbegasung mit Methylbromid bekämpft. Die völlige Abhängigkeit von diesen zwar wirkungsvollen, aber auch umweltschädigenden Pflanzenschutzmitteln hat die Entwicklung alternativer Bekämpfungsverfahren über Jahre verhindert. Der Einsatz von Methylbromid wird ab dem Jahre 2001 verboten, da dieses Pestizid das Bodenleben zu 90 Prozent abtötet und in erheblichem Maße zur Zerstörung der Ozonschicht beiträgt. Die Entwicklung wirkungsvoller und umweltfreundlicher Bekämpfungsverfahren stellt eine der aktuellen Herausforderungen in der Phytomedizin dar. Eine der Möglichkeiten soll in dem vorliegenden Projekt näher untersucht werden. Durch Steigerung der Effektivität antagonistischer Mikroorganismen sowie gleichzeitiger Applikation von Mikroorganismen mit unterschiedlichem Wirkungsmechanismus wird die Bekämpfung des Welkesyndroms an Tomaten untersucht. Im einzelnen ergeben sich folgende Ziele: 1) Verbesserung der Wirksamkeit der antagonistischen Mikroorganismen Pseudomonas fluorescens T58 und Bacillus megaterium 25-6, sowie Trichoderma harzianum T-35 und T-203, 2) Optimierung von Formulierung und Applikation der Antagonisten, und 3) grundlegende Untersuchungen zur Wirkung der verbesserten Stämme auf Pflanzenentwicklung, Befallsverlauf und mikrobielle Diversität im Boden. Die Antragsteller verfügen über langjährige Erfahrungen zum Einsatz antagonistischer Mikroorganismen und der Bekämpfung des Welkesyndroms.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Kopplung von Totholzabbau und Stickstoffkreislauf: Diversität und Funktion von Diazotrophen (Woodstock)

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Kopplung von Totholzabbau und Stickstoffkreislauf: Diversität und Funktion von Diazotrophen (Woodstock)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie.Totholzstämme repräsentieren eine kohlenstoff- (C) und energiereiche aber zugleich stickstoff-(N)arme Ressource in Waldökosystemen. Biologische N2-Fixierung durch freilebende diazotrophe Mikroorganismen trägt zur N-Anreicherung im Totholz bei. Über die Funktion der Diazotrophen für die N-Versorgung von totholzbewohnenden Organismen und für den Totholzabbau ist bislang wenig bekannt. In den Biodiversität-Exploratorien existieren unterschiedliche Bedingungen für diazotrophe Mikroorganismen durch Totholzstämme von 13 Baumarten, die im BeLongDead-Experiment auf 30 Flächen exponiert sind. Ein Ziel des Projektantrags ist den Beitrag der N2-Fixierung zur N-Anreicherung zu quantifizieren und die aktiven diazotrophen Gemeinschaften in den Totholzstämmen des BELongDead-Experiments zu identifizieren. Ein weiteres Ziel ist die experimentelle Überprüfung von Einflussfaktoren auf die N2-Fixierung, Quantität und Diversität der aktiven diazotrophen Gemeinschaft und auf den Transfer von fixierten N zu holzabbauenden Mikroorganismen. Unsere Hypothesen sind, (1) N2-Fixierungsrate und Diversität von Diazotrophen im Totholz unterscheiden sich zwischen den 13 Baumarten, der Intensität des Forstmanagements und den Exploratorien, (2) diazotrophe Gemeinschaften und N2-Fixierung unterscheiden sich entlang des radialen Gradienten in den Totholzstämmen von außen nach innen, (3) Diversität und Aktivität von Diazotrophen und holzabbauenden Pilzen sind stark assoziiert aufgrund ihrer gegenseitigen Abhängigkeit von C und N Ressourcen. Die letztere Beziehung moduliert die Aktivität und Zusammensetzung von diese Gemeinschaften im initialen und forstgeschrittenen Abbaustadium. Ferner testen wir die Hypothese, dass (4) externe N-Quellen die N2-Fixierung und die Quantität von Diazotrophen reduzieren. Zur Überprüfung der Hypothesen werden wir innovative und etablierte Methoden sowie Felduntersuchungen und Laborexperimente kombinieren. N2-Fixierungsraten werden mit dem 15N2 Ansatz und die funktionellen nifH-Gene mit spezifischer quantitativer PCR und Amplicon-Sequenzierung bestimmen. Struktur und Aktivität der diazotrophen Gemeinschaft werden mit einer Bromodeoxyuridintrennung sowie dem Stabilen Isotopen Beprobungsansatz (SIP) von 15N-markierter RNA analysiert, und beide Ansätze mithilfe der Amplicon-Sequenzierung kombiniert. Schließlich wird der Einfluss verschiedener Einflussfaktoren Parameter auf die Struktur und Aktivität der diazotrophen Gemeinschaft untersucht. Unsere Expertisen ermöglichen es die Wechselwirkungen zwischen N2-Fixierung, Abundanz und Diversität der Diazotrophen und kontrollierenden Faktoren für den Totholzabbau neu zu bewerten. Durch die Zusammenarbeit in einem koordinierten und vollständig replizierten Experiment mit 30 Waldökosystemen erwarten wir belastbare Ergebnisse mit großer wissenschaftlicher Bedeutung und Nutzen für die Totholzforschung.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Einfluss der Waldbewirtschaftungsintensität, Baumartenidentität und der pilzlich-bakteriellen Diversität auf Ressourcennutzung, Holzabbau und Gasemissionen von Totholz FunWood IV

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Einfluss der Waldbewirtschaftungsintensität, Baumartenidentität und der pilzlich-bakteriellen Diversität auf Ressourcennutzung, Holzabbau und Gasemissionen von Totholz FunWood IV" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Molekulare Systembiologie.Der Abbau von Holz in terrestrischen Ökosystemen ist ein bedeutender Prozess mit weitreichenden ökologischen Konsequenzen. Totholz ist eine wichtige strukturelle Komponente in Waldökosystemen, die eine Vielzahl von Ökosystemfunktionen, insbesondere die Kohlenstoff-Sequestrierung und die Nährstoffkreisläufe beeinflusst und ein Habitat für holzbewohnende Organismen bietet. Der hier gestellte Antrag FunWood IV setzt an diesen Ökosystemfunktionen an und testet experimentell ob die Artenvielfalt einen Einfluss auf die funktionelle Diversität der totholzabbauenden Gemeinschaften hat und wie diese Diversität und die Ökosystemprozesse durch die Intensität der Waldbewirtschaftung beeinflusst werden. FunWood IV kombiniert einen Einsatz von aktuellen Techniken (Amplicon Gen Sequenzierung, Metaproteomics, Protein-SIP, CO2 Emissionsraten, C/N Elementaranalyse), um ein vertieftes Verständnis zu erhalten, wie pilzliche und bakterielle Lebensgemeinschaften den Holzabbauprozess unter wechselnden Temperaturbedingungen durchführen. Neben der Möglichkeit eine Korrelation zwischen Ökosystemprozessen, wie Holzabbau und mikrobielle Diversität zu erreichen, bietet der zu erarbeitende Datensatz die Möglichkeit den Einfluss der Waldbewirtschaftungsintensität und der Baumartenidentität über mehrere geographische Dimensionen charakterisieren zu können. FunWood IV hat drei Kernfragestellungen innerhalb des BeLong Dead (Biodiversitäts Exploratorien im Langzeitexperiment mit Totholz) Konsortiums des DFG-Schwerpunktprogrammes 1374: (i) Untersuchung der funktionellen Diversität von totholzabbauenden Lebensgemeinschaften (ii) Beurteilung der funktionellen und strukturellen Antwort der holzabbauenden Lebensgemeinschaft bei wechselnden Temperaturbedingungen (iii) Analyse des Einflusses der Waldbewirtschaftungsintensität und der Baumartenidentität auf die Biodiversität und deren Beitrag zum Totholzabbau.

1 2 3 4 514 15 16