Das Projekt "DAS: Stadt und Land im Fluss - Netzwerk zur Gestaltung einer nachhaltigen Klimalandschaft - KlimNet" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut, Arbeitsgruppe Geomatik durchgeführt. Wie können wir als Bürgerinnen und Bürger dem Klimawandel in unseren Städten trotzen? Im Projekt 'Stadt und Land im Fluss - Netzwerk zur Gestaltung einer nachhaltigen Klimalandschaft (kurz: KlimNet)' sammeln wir sowohl leicht umsetzbare als auch verrückte Ideen, wie jeder und jede mit den spürbaren Auswirkungen des Klimawandels umgehen kann. Wir wollen wissen, welche Aktivitäten es schon gibt, um auf Hitze, Trockenheit, Starkregen, Hochwasser oder zunehmende Pollen zu reagieren und welche Maßnahmen Sie sich noch wünschen. Dabei sind der Phantasie erst einmal keine Grenzen gesetzt: Vielleicht sollte in einem Industriegebiet ein Park angelegt werden? Oder Sie haben eine Idee, wie man Straßenbäume bei zunehmender Trockenheit mit Wasser versorgen kann? Das Projekt möchte die ersten Schritte tun, diese Ideen umzusetzen. Um überhaupt erst einmal zu wissen, welche Auswirkungen bauliche Veränderungen wie Versiegelung von Flächen oder Begradigung von Flüssen auf das Klima haben, verknüpfen die Geographischen Institute der Universitäten Bonn und Bochum Satelittendaten der letzten 40 Jahre von NRW mit den Auswirkungen auf das Mikroklima. Außerdem werfen wir einen genaueren Blick auf die Klimakonzepte der Kommunen. Schwerpunkte des Projekts sind die beiden Pilotstädte Bonn und Gelsenkirchen. Ergebnisse sollen aber auch auf andere Städte übertragen werden.
Die Karte stellt den Grad der Versiegelung, dh. die Bedeckung der Erdoberfläche mit undurchlässigen Materialien in % der Bezugsfläche dar. Ausführliche Methodenbeschreibung siehe (Methode Ausgabe 1993). Aus den angegebenen Datengrundlagen wurde pro Blockfläche der Bebauungsgrad (Bebauung mit Gebäuden) und der unbebaut versiegelte Anteil (befestigte Flächen ohne Gebäude) ermittelt. Die Addition beider Angaben ergibt den Versiegelungsgrad einer Fläche, dh. auch die unbebaut versiegelten Anteile einer Fläche gehen zu 100% in den Gesamtversiegelungsgrad ein. So erklärt sich zum Beispiel der auf den ersten Blick sehr hohe Versiegelungsgrad der Bahnflächen von 73 %, der sich aus 7 % Bebauung und 66 % unbebaut versiegelten Flächen zusammensetzt. Diese wiederum wurden mit einem Anteil von 90 % der “durchlässigsten” Belagsklasse 4 bestimmt (siehe Belagsklassen). Da der Bebauungsgrad die genauer ermittelbare Größe ist, sind tendenziell die Angaben des Versiegelungsgrades um so genauer, je höher der Anteil der bebauten Fläche ist. Durch terrestrische Stichprobenerhebungen wurde eine statistische Absicherung der Daten vorgenommen. Für die Nutzungskategorien Wald und Landwirtschaft wurde pauschal von einem Versiegelungsgrad von 2 bzw. 2 %, für Ruderalflächen von 7 % und für Parkanlagen von 10 % ausgegangen. Wenn der tatsächliche erkennbare Versiegelungsgrad deutlich vom pauschal zugeordneten abwich, wurde die reale Versiegelung bestimmt. Für Straßen und Gleisanlagen wird kein Versiegelungsgrad dargestellt. Die Bestimmung der Versiegelung erfolgte nur für Flächen ab einer Mindestgröße von einem Hektar; für lineare Flächenstrukturen gilt eine Mindestbreite von 20 Metern. Alle Informationen über zur Versiegelung werden im Informationssystem Stadt und Umwelt (ISU) verwaltet und bearbeitet. Als räumliches Bezugssystem dient die digitale topographische Grundkarte (ISU 50) im Maßstab 1:50 000 des ISU. Darin ist der einzelne statistische Block, der in der Regel durch Straßen begrenzt wird, mit seiner Blocknummer dargestellt. Die Nummerierung und Abgrenzung der Blöcke werden vom Statistischen Landesamt geführt. Die kleinste Bezugsfläche wird von den Blockteilflächen gebildet, die bei unterschiedlicher Flächennutzung innerhalb eines statistischen Blocks abgegrenzt wurden. Für die vorliegende Karte entstehen so 24 690 Blockflächen. Die Darstellung ist generalisiert und nicht lagegetreu . Straßen haben im räumlichen Bezugssystem des ISU keine Fläche und sind somit datentechnisch nicht ansprechbar. Der Straßenverlauf ergibt sich durch die Grenzen der einzelnen statistischen Blöcke. Belagsklassen Um die Auswirkungen von Versiegelung auf den Naturhaushalt möglichst differenziert zu erfassen, sind unterschiedliche Betrachtungswinkel vorstellbar. Die klimatischen Auswirkungen sind beispielsweise besser interpretierbar, wenn bekannt ist, ob die versiegelte Fläche bebaut oder unbebaut ist, und wie hoch die Bebauung ist. Die spezielle Betrachtung der Auswirkungen auf die Grundwasserneubildung und das Abflußverhalten von Niederschlägen führt zu der Überlegung, daß nicht alle künstlichen Oberflächenbeläge die gleichen ökologischen Eigenschaften haben. So ist z. B. ein breitfugiges Mosaikpflaster im Verhältnis zu einer Betonfläche sehr viel wasserdurchlässiger; oder ein Parkplatz, der mit Rasengittersteinen bestückt ist, hat eine andere mikroklimatische Wirkung als ein asphaltierter Parkplatz. Die vorkommenden Arten von Oberflächenbelägen wurden zu vier Belagsklassen mit unterschiedlichen Auswirkungen auf den Naturhaushalt zusammengefasst (vgl. Tab. 1). Über die Typisierung der Bezugsflächen und die repräsentative Bestimmung der Belagsklassenverteilung für jeden Flächentyp (vgl. Tab. 2) wurde für jede Bezugsfläche die Belagsklassenverteilung der unbebaut versiegelten Fläche abgeleitet (AGU 1988). Für neu erhobene Flächentypen wurde die Belagsartenverteilung vergleichbarer Flächentypen herangezogen. Diese Daten werden auch zur Umsetzung weiterführender Methoden verwendet (wie z. B. die Berechnung der Versickerung, Karte 02.13). Die durchschnittlichen Versiegelungswerte der einzelnen Flächentypen haben sich im Vergleich zur Ausgabe 1993 nur unwesentlich verändert . Lediglich beim Flächentyp sonstige Verkehrsfläche hat sich der durchschnittliche Versiegelungsgrad etwa um die Hälfte reduziert. Ursache hierfür ist die Neuaufnahme zahlreicher begrünter unversiegelter Verkehrsinseln und Mittelstreifen.
Aufgrund der unterschiedlichen Datengrundlagen in West- und Ost-Berlin wurden die Versiegelungsgrade unterschiedlich ermittelt. West-Berlin Bereits im Umweltatlas von 1985 ist die vom Institut für Ökologie der TU Berlin für West-Berlin erarbeitete Karte der Versiegelung enthalten (SenStadtUm 1985). Sie zeigt den auf der Basis von Luftbildern von 1979 geschätzten Versiegelungsgrad auf der Ebene der Baublöcke. Im Jahre 1988 wurde ein Gutachten zur Aktualisierung und Erweiterung der Karte erstellt (AGU 1988). Ziel war eine komplette Neubestimmung der Versiegelung und die Überführung der Daten in das Umweltinformationssystem der Senatsverwaltung für Stadtentwicklung und Umweltschutz. Auf der Grundlage von Satellitenbildauswertungen wurden die Versiegelungsgrade der Bezugsflächen des Umweltinformationssystems bestimmt. Diese Flächen entsprechen den statistischen Blöcken, wurden aber bei unterschiedlichen Nutzungen innerhalb eines Blockes weiter zu nutzungshomogenen Blockteilflächen unterteilt. Sie bilden das Räumliche Bezugssystem im Umweltinformationssystem (digitale Grundkarte, 1:50 000) und sind mit ihren Nutzungen in den Karten 06.01 und 06.02 dargestellt (SenStadtUm). Für die Nutzungskategorien Wald und Landwirtschaft wurde pauschal von einem Versiegelungsgrad von 1 bzw. 2 %, für Ruderalflächen von 7 % und für Parkanlagen von 10 % ausgegangen. Die Auswertungen konzentrierten sich damit auf ca. 10 000 versiegelungsrelevante Flächen, die etwa 50 % des Stadtgebietes von West-Berlin einnehmen. Zur Bestimmung des Versiegelungsgrades der Bezugsflächen wurde zunächst eine Satellitenbildinterpretation von Landsat-TM-Aufnahmen von 1985 bzw. 1988 vorgenommen. Anhand von Testflächen mit bekannten, aus Kartierungen vor Ort bestimmten Versiegelungsgraden wurde das Satellitenbild kalibriert und so klassifiziert, dass sich eine zehnstufige Skala von Versiegelungsklassen ergab. Als Zwischenergebnis wurde ein Farbdia ausgegeben, das die Versiegelungsklasse für jeweils 30 × 30 m große Rasterflächen darstellt. Dieses Bild wurde dann mit der digitalen Grundkarte überlagert, die Anzahl der Bildpunkte getrennt nach Versiegelungsklassen für jede Blockteilfläche ausgezählt und der Versiegelungsgrad in Prozent für jede Blockteilfläche berechnet. Ein Vergleich der durch die Satellitenbildinterpretation ermittelten Werte mit den Ergebnissen der Kartierung der Testflächen ergab eine nur geringe mittlere Abweichung. Über Plausibilitätskontrollen ermittelte Unstimmigkeiten wurden mit Hilfe von Luftbildern korrigiert, um eine höhere Genauigkeit zu erreichen. Im Jahr 1991 wurden diese Daten durch Abgleich mit Luftbildern von 1990 aktualisiert. Ost-Berlin Für den Ostteil der Stadt wurde ebenfalls zu jeder Blockteilfläche der Versiegelungsgrad bestimmt. Dabei wurde zunächst der im Maßstab 1:5 000 gut erkennbare Bebauungsgrad in Prozent der Gesamtfläche geschätzt. Bei veralteten Ausgaben der Kartenblätter wurde der Bebauungsgrad mit den aktuellen Luftbildern ggf. korrigiert. Der Versiegelungsgrad einer Fläche setzt sich aus den Komponenten ”Bebauungsgrad” und ”sonstige Versiegelung” (unbebaut versiegelte Fläche) zusammen. Dazu gehören die durch Wege, Parkplätze, Stellflächen etc. versiegelten Flächen. Die unbebaut versiegelte Fläche wurde über die Luftbildinterpretation ebenfalls in Prozent der Gesamtfläche geschätzt. Größere Schwierigkeiten traten bei der Schätzung des Versiegelungsgrades (bzw. der unbebaut versiegelten Fläche) bei der dichten gründerzeitlichen Hinterhofbebauung auf, da die Verschattungseffekte von Gebäuden und Bäumen auf den für die östlichen Bezirke lediglich im Maßstab 1:6 000 vorliegenden Luftbildern den Blick auf die Hoffläche verhinderten. In diesem Fall wurde auf Durchschnittswerte dieses Flächentyps zurückgegriffen. Durch Addition mit dem bereits bestimmten Bebauungsgrad ergab sich der Versiegelungsgrad. Da der Bebauungsgrad die genauer ermittelbare Größe ist, sind tendenziell die Angaben des Versiegelungsgrades um so genauer, je höher der Anteil der bebauten Fläche ist. Für bestimmte gering versiegelte Nutzungen, wie z. B. Parks und Grünflächen wurde nur dann ein Versiegelungsgrad bestimmt, wenn er von dem pauschal zugeordneten deutlich abwich. Im Ostteil der Stadt wurde eine Vielzahl von Baustellen kartiert, deren Zustand zum Zeitpunkt der Erhebung es nicht erlaubte, Aussagen über die künftige Nutzung und damit den Versiegelungsgrad zu machen. Daher wurde die Kategorie ”Versiegelungsgrad nicht bestimmbar” eingeführt. Der Versiegelungsgrad von Straßen ist in der vorliegenden Karte nicht dargestellt, da im Räumlichen Bezugssystem des Umweltinformationssystems nur statistische Blöcke, jedoch keine Straßen erfaßt sind. In einigen Fällen war eine Nachbestimmung unbebaut versiegelter Flächen erforderlich. Die Satellitenbild-Klassifizierung erlaubt keine Unterscheidung zwischen vegetationsfreien unversiegelten und versiegelten Flächen. Um eine einheitliche Klassifizierung durchzuhalten, wurden diese Flächen bei der Luftbildinterpretation ebenfalls nicht differenziert. Durch Nachkartierung wurden dann vegetationsfreie Flächen wie Strände, Dünen und Brachflächen im Sinne der Versiegelungsdefinition als unversiegelt klassifiziert. Andere vegetationsfreie, zunächst als versiegelt klassifizierte (Teil-)Flächen wie verdichteter Boden oder Schotterflächen auf Bahngelände, die eine gewisse Wasserdurchlässigkeit aufweisen sollten nicht mit einem Versiegelungsgrad von 100 % sondern nur von 40 % in die Berechnung des Versiegelungsgrads der Bezugsfläche eingehen. Daher wurde hier nachträglich rechnerisch eine Minderung des Versiegelungsgrads vorgenommen. Hiervon betroffen waren vor allem Bahnflächen, die großflächig aus Schotterflächen bestehen, Industrie- und Gewerbegebiete und Flächen der Ver- und Entsorgung, die über einen großen Flächenanteil von unbefestigten Lagerflächen verfügen. Im Gesamtbild der Karte bewirkt diese Minderung keine große Veränderung, da die im Versiegelungsgrad veränderten Blockteilflächen nur ganz selten ausschließlich die oben beschriebenen Oberflächen aufweisen, sondern immer nur gemäß ihrem Flächenanteil in die Berechnung eingingen. Belagsklassen Um die Auswirkungen von Versiegelung auf den Naturhaushalt möglichst differenziert zu erfassen, sind unterschiedliche Betrachtungswinkel vorstellbar. Die klimatischen Auswirkungen sind beispielsweise besser interpretierbar, wenn bekannt ist, ob die versiegelte Fläche bebaut oder unbebaut ist, und wie hoch die Bebauung ist. Die spezielle Betrachtung der Auswirkungen auf die Grundwasserneubildung und das Abflussverhalten von Niederschlägen führt zu der Überlegung, daß nicht alle künstlichen Oberflächenbeläge die gleichen ökologischen Eigenschaften haben. So ist z. B. ein breitfugiges Mosaikpflaster im Verhältnis zu einer Betonfläche sehr viel wasserdurchlässiger; oder ein Parkplatz, der mit Rasengittersteinen bestückt ist, hat eine andere mikroklimatische Wirkung als ein asphaltierter Parkplatz. Die vorkommenden Arten von Oberflächenbelägen wurden zu vier Belagsklassen mit unterschiedlichen Auswirkungen auf den Naturhaushalt zusammengefasst (s. Tab. 1). Über die Typisierung der Bezugsflächen und die repräsentative Bestimmung der Belagsklassenverteilung für jeden Flächentyp (vgl. Tab. 2) wurde für jede Bezugsfläche die Belagsklassenverteilung (AGU 1988) abgeleitet. Die Belagsarten wurden nur für den Anteil der unbebaut versiegelten Fläche bestimmt, weil davon auszugehen ist, dass eine Bebauung nicht mehr nach diesen Kriterien differenzierbar ist. Diese Daten werden zur Umsetzung weiterführender Methoden verwendet (wie z. B. Berechnung der Grundwasserneubildung).
Das Projekt "Teil 2: Bestandsklimatologie und GIS" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Geochemie und Lagerstättenkunde durchgeführt. Zecken und von Zecken übertragene Krankheiten sind von großer Bedeutung für die Gesundheit von Mensch und Tier. Über die Faktoren, die ihre Verbreitung und Dynamik beeinflussen, ist allerdings nur wenig bekannt. In diesem Projekt werden Spezialisten aus verschiedenen Fachbereichen zusammen-arbeiten, um den Einfluss von Wetter, (Mikro)Klima, Habitat, Landnutzung, menschlichen Eingriffen und die Populationsdynamik den Wirtstieren auf die Verbreitung und Dynamik von Zecken und den von ihnen übertragenen Krankheitserregern in Baden-Württemberg zu bestimmen. Das Projekt ist in vier Module unterteilt. Im ersten Modul konzentrieren wir uns auf die Verbreitung von Zecken in gesamt Baden-Württemberg, im zweiten Modul untersuchen wir im Detail, inwiefern Mikroklima, Habitat und Wirtstiere die Populationsdynamik von Zecken beeinflussen. Zecken, die im ersten und zweiten Modul gesammelt werden, werden im dritten Modul auf zeckenübertragene Pathogene und ihre Dynamik untersucht. Das vierte Modul beinhaltet eine übergreifende Analyse aller Daten, um die relative Bedeutung der untersuchten Faktoren zu bestimmen und um damit ein Risikomodel zu erstellen, das die Bedeutung von Klimaveränderungen für zeckenübertragene Krankheiten in Baden-Württemberg mit einbezieht.
Das Projekt "Teil 4: Kontrolle der Zeckenaktivität" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Zoologie, Fachgebiet Tierökologie durchgeführt. Zecken und von Zecken übertragene Krankheiten sind von großer Bedeutung für die Gesundheit von Mensch und Tier. Über die Faktoren, die ihre Verbreitung und Dynamik beeinflussen, ist allerdings nur wenig bekannt. In diesem Projekt werden Spezialisten aus verschiedenen Fachbereichen zusammen-arbeiten, um den Einfluss von Wetter, (Mikro)Klima, Habitat, Landnutzung, menschlichen Eingriffen und die Populationsdynamik den Wirtstieren auf die Verbreitung und Dynamik von Zecken und den von ihnen übertragenen Krankheitserregern in Baden-Württemberg zu bestimmen. Das Projekt ist in vier Module unterteilt. Im ersten Modul konzentrieren wir uns auf die Verbreitung von Zecken in gesamt Baden-Württemberg, im zweiten Modul untersuchen wir im Detail, inwiefern Mikroklima, Habitat und Wirtstiere die Populationsdynamik von Zecken beeinflussen. Zecken, die im ersten und zweiten Modul gesammelt werden, werden im dritten Modul auf zeckenübertragene Pathogene und ihre Dynamik untersucht. Das vierte Modul beinhaltet eine übergreifende Analyse aller Daten, um die relative Bedeutung der untersuchten Faktoren zu bestimmen und um damit ein Risikomodel zu erstellen, das die Bedeutung von Klimaveränderungen für zeckenübertragene Krankheiten in Baden-Württemberg mit einbezieht.
Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie, Fachgebiet Pflanzenökologie und Ökotoxikologie (320b) durchgeführt. Übergeordnetes Ziel des Verbundprojekts ist die Installation von einer Agrophotovoltaik (APV) Forschungsanlage und die Etablierung von Feldbeständen auf den Nutzflächen der Hofgemeinschaft Heggelbach nahe dem Bodensee in Baden-Württemberg. Das Projekt bietet somit die Möglichkeit, APV als möglichen Lösungsansatz zur Entschärfung der Flächennutzungskonkurrenz bei gleichzeitiger Erzeugung von regenerativen Energien und Produktion von Nutzpflanzen zu untersuchen. Ziel der agrarwissenschaftlich orientierten Analysen der Universität Hohenheim ist, die Eignung von Kulturpflanzen in einer ortsüblichen Fruchtfolge für den Anbau unter APV in der Praxis zu prüfen, die Auswirkungen der APV-Anlage auf die Erträge und die Produktqualität der landwirtschaftlichen Erzeugnisse zu untersuchen und die Folgen von APV für das Agrarökosystem (Mikroklima, Boden, Biodiversität) zu ermitteln. Es ist geplant die zu untersuchenden Kulturarten über zwei Versuchsjahre anzubauen, um Empfehlungen hinsichtlich Bearbeitungsintensität und Beschattungstoleranz und der Etablierung von Fruchtfolgen unter APV für die Praxis abzuleiten. Die Projektergebnisse können einen wichtigen Beitrag zur Energiewende sowie zum schonenden Umgang mit natürlichen Ressourcen durch die effizientere Flächennutzung unter APV liefern. Die Arbeitspakete der wissenschaftlichen und technischen Grundlagen werden ab Juni 2015 (Beginn der Forschungsphase) umgesetzt und die APV-Forschungsanlage wird geplant. Die Installation der APV-Anlage am Standort Heggelbach erfolgt ab Juli 2016. In diesem Zusammenhang entwickelt die Universität Hohenheim ein für den APV-Standort angepasstes Versuchsdesign und arbeitet einen abgestimmten Beprobungsplan und ein Meßprogramm aus. Im Sommer 2015 ist die Teilnahme an einer Bürgerwerkstatt geplant, mit der die gesellschaftliche Einbindung und Akzeptanz für das Projektvorhaben gefördert werden soll. Ab Mitte 2016 beginnt die Erfassung der Parameter zu Umwelt, Klima, den Bodenkennwerten und Biodiversität. Ab Herbst 2016 werden in den an dem Standort etablierten Pflanzenbeständen agrarwissenschaftliche Parameter, ab Juli 2017 pflanzenbauliche Parameter (Ertrag, Qualität) erfasst. Ab Herbst 2017 beginnt die Ergebnisauswertung und Aussagen zu Umwelt, Bodenkennwerten, Biodiversität sowie Ertrag- und Ertragsqualität werden formuliert und Empfehlungen für die praktische Umsetzung abgeleitet.
Das Projekt "Aspects of global change and the biodiversity along an altitudinal transect in continental Antarctica" wird vom Umweltbundesamt gefördert und von Universität Düsseldorf, Department Biologie, Institut für Stoffwechselphysiologie,Zoophysiologie, Arbeitsgruppe Ecophysiology durchgeführt. Lichens and bryophytes form the dominant vegetation at terrestrial sites across the Antarctic. Detailed research has been done at terrestrial coastal sites of the maritime Antarctic. While there is a broad knowledge on well-developed communizes of lichens and bryophytes considering physiology and vegetation ecology of these coastal sites the knowledge of diversity, ecology and physiology is scarce across continental sites. The rare investigations on continental Antarctica focused on coastal sites (on more or less sea level) where lichen colonization occurred. The question arises whether lichen colonization is restricted to lower altitudes at continental sites or will appear also up to higher elevations. The hypothesis of the project is that lichens are able to colonies higher altitudes as long as micro niches with suitable environmental parameters are available. Therefore, the proposed project focuses on the characterization of microclimate and atmospheric parameters to be able to describe environmental parameters which may influence and effect lichen species at respective habitats. In addition, chlorophyll a fluorescence will be calculated to get indications on response of photosynthesis activity. The project also emphasizes on the diversity of lichen species along an altitudinal transect up to 3000m a.s.l. and the interactions between and among species considering the colonization process. The aim of the project is to correlate the data achieved with environmental change at the continental Antarctic.
Das Projekt "Improved Protection of Paintings During Exhibition, Storage and Transit (PROPAINT)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Silicatforschung (ISC) durchgeführt. Paintings are among the most important and most visited masterpieces in European museums, galleries and exhibition facilities. To preserve the paintings as close as possible to the artists original expression, is a central focus for national authorities, museum administrators and technical conservators. An important part of this work is to protect the paintings against the degrading influences of the various indoor environments. Specially designed microclimates are more and more used for this purpose. There is a growing concern about the nature of the microclimate which develops over time in these enclosed spaces and its potential for damage to the paintings. The main aim of the PROPAINT project is to develop innovative protection treatments used as a preventive conservation measure for paintings during exhibition, storage and transit. The PROPAINT project will execute research on the protective effect of microclimate-frames, particularly focusing on the microclimate paintings are exposed to inside the frames. PROPAINT will undertake research on the protective effect of varnishes applied to paintings generally and specifically inside microclimate frames. Measurements of the state of microenvironments in microclimate frames and the potential deteriorating effects on paintings will be made both in the laboratory and in the field by using, for the first time simultaneously, dosimeters developed in previous EC projects. The appropriateness and the synergies of their integrated use will be evaluated. The results of the project will allow improved design of microclimate frames to offer best possible microclimates for conservation of paintings during exhibition, storage and transit. The project will contribute with improved comparative knowledge about microclimate effects on varnishes applied to paintings as remediation surface treatments. The project results will also contribute to preventive conservation measures and standards for microclimate control of paintings. Prime Contractor: Norsk institutt for Luftforskning; Kjeller; Norway.
Das Projekt "Auswirkungen des Klimawandels auf die Wasserverfügbarkeit für die Wälder Baden-Württembergs" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Hydrologie durchgeführt. Die aktuellen Klimaprognosen sagen für weite Teile Baden-Württembergs die Zunahme von Extremwetterlagen und - je nach Standort eine mehr oder weniger starke - Erhöhung des Trockenstressrisikos für Wälder voraus. Um die Auswirkung des sich ändernden Trockenstressrisikos auf Baumwachstum und -vitalität abschätzen zu können, werden Wasserhaushaltsinformationen im kleinräumigen Geländemaßstab benötigt. Die Wasserverfügbarkeit hängt neben den lokalen Witterungsbedingungen von den hydraulischen Bodeneigenschaften und von Dichte, Baumartenmischung und Wurzelraum der Waldbestände ab. Auf lokaler und kleinräumiger Ebene soll die Wasserverfügbarkeit mittels physikalisch basierter Wasserhaushaltsmodelle berechnet werden, in welche diese Standortseigenschaften als Steuergrößen eingehen. Das Trockenstressrisiko, d.h. die Auftretenswahrscheinlichkeit von Wassermangel, wird über statistische Auswertungen aus den modellierten Zeitreihen von Wassergehalten und Saugspannungen abgeleitet. Die Parameter der so ermittelten Häufigkeitsverteilungen von Wasserdefiziten werden durch multiple Regressionsmodelle mit Hilfe kartierter Informationen zu Gelände-, Boden- und Bestandseigenschaften sowie meteorologischen Größen auf größere Landschaften und Regionen übertragen. Letztlich sollen die erstellten Regressionsmodelle verwendet werden, um das Trockenstressrisiko für die gesamten Waldflächen Baden-Württembergs unter den derzeitigen und den für die Zukunft prognostizierten Klimabedingungen abzuschätzen. Die Projektergebnisse sollen Waldbewirtschaftern in Form von Risikokarten zur Verfügung gestellt werden.
Das Projekt "Einfluss von Kleinkahlschlägen auf Mikroklima und Wasserhaushalt von Waldbeständen: Dreidimensionale Modellierung und Feldmessungen (Paketantrag Beese/Gravenhorst/Meiwes)" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Büsgen-Institut, Abteilung Bioklimatologie durchgeführt. Forstliche Eingriffe beeinflussen das Mikroklima von Wäldern und in unmittelbarer und mittelbarer Folge die dort ablaufenden abiotischen und biotischen Prozesse. Wie sich ein Kleinkahlschlag auf die raum-zeitliche Entwicklung der Wasser-, Energie- und C-Haushalte der Freifläche und ihrer angrenzenden Waldränder auswirkt, soll für Versuchsflächen im Solling analysiert werden. Hierzu wird ein prozessorientiertes, hochauflösendes, dreidimensionales Modell entwickelt, in dem Modelle des Strahlungsregimes sowie des turbulenten Austausches zwischen Atmosphäre und Wald mit Modellen des Bestandswasserhaushalts und des Wassertransports in Bäumen gekoppelt werden. Das Modell wird mit gemessenen Werten von mikrometeorologischen Kenngrößen und von Bodenwassergehalten sowie von Wassertransportraten in jungen und alten Bäumen angetrieben und verglichen. Damit kann untersucht werden, wie sich die Kleinkahlschläge auf die Wind-, Strahlungs-, Temperatur- und Wasserverteilung im Waldökosystem auswirken. Das Wuchsverhalten der auflaufenden Vegetation auf Kleinkahlflächen und im angrenzenden Wald kann somit besser beurteilt werden. Auch liefert das Modell die abiotischen Rahmenbedingungen für Transferprozesse von N2O, NO, CO2 und CH4. Mit diesem 3D-Modell wird so ein wissenschaftliches Instrument zur Lösung praktischer und theoretischer Probleme der Forstwirtschaft, z.B. beim geplanten Waldumbau, zur Verfügung gestellt.