Das Projekt "Clean Sky Green Rotorcraft (Clean Sky GRC)" wird vom Umweltbundesamt gefördert und von Airbus Helicopters Deutschland GmbH durchgeführt. Background: The use of helicopters has been concentrated until now on activities such as medical evacuation, rescue, civil protection, aerial work and law enforcement and such operations are expected to grow sharply in the near future. In addition, the rotorcraft traffic for passenger transport representing today only a marginal activity is expected to develop rapidly (2 to 3 fold increase in 2015-20 period). For example, helicopter shuttle operations from city heliports to airports, or even between cities without airports or connecting islands to mainland with limited ground infrastructure. In the meantime, thanks to their capability to operate independently from runways and higher speed compared to helicopters, tilt rotors are expected to play a key role as complement of turboprop airplanes feeding major airports with passengers starting from secondary ones. As a consequence of such traffic growth, the rotorcraft contribution to environmental impact, negligible today, would become more significant in next decade unless a major initiative succeeds in keeping it under control. The Green Rotorcraft ITD, a component of the Clean Sky initiative, together with other already launched technology programmes at European or national levels responds to the challenge of halving the specific impact of any rotorcraft operation on the environment. It should be noted that the results of some of those European programme launched in the 6th Framework Programme (FP6) will be raised to a higher maturity level within Clean Sky. Environmental Objectives: The Green RotorCraft ITD (GRC-ITD) gathers and structures all activities concerned specifically with the integration of technologies and demonstration on rotorcraft platforms (helicopters, tilt-rotor aircraft) which can not be performed in platform-generic ITDs. In line with the ACARE environmental objectives for 2020 (SRA2 addendum 2008) and the general Clean Sky objectives, the GRC top-level objectives are to: - reduce CO2 emission by 25 to 40% per mission (for rotorcraft powered respectively by turboshaft or diesel engines); - reduce the noise perceived on ground by 10 EPNdB or halving the noise footprint area by 50%; - ensure full compliance with the REACH directive which protects human health and environment from harmful chemical substances. The status of the global helicopter fleet in the year 2000 constitutes the baseline against which achievements will be assessed. Progress toward these goals will result not only from GRC internal activities but also from the collaboration with the relevant cross-cutting activities in SAGE (turboshaft engine), SGO (electrical systems), and ED (ecodesign). Rough orders of magnitude of gains expected from individual components along with the rationale for their combination in overall environmental benefits are shown in the diagram. Beside the direct effects, particular attention is devoted to weight changes which impact dramatically both fuel consumption and noise emission.
Das Projekt "Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. General Information: Summary Observations have shown that ozone levels in the upper troposphere (UT) and the lower stratosphere (LS) have changed over the last two to three decades. The observed reductions in the LS, which has been seen in the Northern Hemisphere during the last decade most probably are caused by man made emissions (CFCs and bromine compounds) in conjunction with particles and PSCs formation. For the UT, observations have shown an ozone increase for at least two decades, but less so the last few years. The causes of these changes are poorly understood. Modelling studies have been used to estirnate the impact of different man made sources on the chemical composition, and on ozone in particular in the UT and the LS. These studies show that there are significant uncertainties in the estimates of the impact which are a result of limited knowledge of atmospheric processes and which have to be improved in order to come up with better estimates of the impact of aircraft emissions on ozone in the UT and the LS. Emissions from aircraft (NOx, H20, SO2 and soot) at cruising altitudes are likely to affect the ozone chemistry in the UT and the LS in two ways: directly through enhanced photochemical activity (emission of NOx and water vapour), and through enhanced particle formation from NOx, water vapour and SO2. The impact of aircraft emissions is of particular importance to study, as the emissions are projected to grow rapidly over the next two decades compared to emissions from most other sources, and because there are significant regional differences in the impact on ozone and in the projected growth in the emissions. It is therefore likely that future aircraft emissions have the potential to perturb ozone levels significantly. The overall objective of the study is to improve our scientific basis for estimates of the impact of aircraft emissions on the chemical composition in the UT and in the LS, and to perform 3-D model studies of the large scale (regional to hemispheric) perturbation of ozone from a projected future fleet of subsonic and supersonic aircraft. Focus in the study will be on two main areas: a) The role of heterogeneous processes in the UT and the LS and how these processes can be parameterised in global 3-D CTMs, and b) modelling studies of the future impact of subsonic as well as supersonic traffic on the ozone in the UT and the LS, with particular emphasis on the regional contribution to global scale ozone from regions with the largest projected traffic (Europe - US, South Asia and surrounding areas). The tools for these studies will be state of the art 3-D CTMs (Chemical Tracer Models) available among the participating groups. The CTMs have different spatial resolution, transport parameterisation, and parameterisation of the chemical processes, including heterogeneous chemistry,... Prime Contractor: University of Oslo, Department of Geophysics; Oslo; Norway.
Das Projekt "Bathymetry Service Platform (BASE-platform)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) durchgeführt.
Das Projekt "Aeroakustik von Mini-TEDs" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Aerodynamik und Gasdynamik durchgeführt. Das Vorhaben ist Teil des Verbundes FREQUENZ. Die Lärmbelastung der Zivilbevölkerung ist eines der wesentlichen Hindernisse für das kommende Wachstum im Flugverkehr. Neben der Dämpfung einzelner Lärmquellen (z.B. Nasenklappe, Fahrwerk, Triebwerke) kann auch die Schallimmission am Boden verringert werden, indem der Flugpfad steiler und langsamer gewählt wird. Dazu ist jedoch ein höherer Auftrieb erforderlich, der beispielsweise durch den Einsatz von Mini-TEDs bereitgestellt wird. Es ist jedoch noch weitgehend unklar, wie die akustischen Eigenschaften eines solchen Hochauftriebssystems aussehen. Dies soll in dem beantragten Vorhaben mit numerischen Verfahren untersucht werden. Zur Anwendung kommt dabei die DES-Methode, die es ermöglicht, die instationären, dreidimensionalen Strömungsvorgänge an den Mini-TEDs aufzulösen. Der dort lokal erzeugte Schall wird mit Hilfe der akustischen Analogie analytisch ins Fernfeld zum Beobachter transportiert. Die in dem Vorhaben gewonnenen Erkenntnisse können einen wesentlichen Beitrag zur Einschätzung der Einsetzbarkeit von Mini-TEDs an künftigen Verkehrsflugzeugen liefern. Gleichzeitig geben sie wertvolle Hinweise auch zur möglichen Nachrüstung an vorhandenen Flugzeugtypen.
Das Projekt "Neuartiges System fuer das Schleppen von Flugzeugen ohne Zugstange" wird vom Umweltbundesamt gefördert und von Krauss-Maffei Verfahrenstechnik GmbH durchgeführt. Objective: The aim of the project is to save jet fuel at airports by using a new system of towing aircraft from landing/take off points to terminal instead of running aircraft on their own turbine. At the same time, the new towing system without tow bar helps to reduce environmental impacts (i.e. noise, smoke, exhaust gases). It is expected to achieve an energy saving of about 3500 TOE/year per B-747 aircraft. Expected payback is between 3 and 5 years at commercial level. General Information: Conventional aircraft towing requires a tow bar. Danger of 'jack-knifing' during barking restricts towing speed. Other inconveniences are: - manual coupling and uncoupling is time consuming and inefficient - to provide a multiplicity of different tow bars is complex and expensive. High speed towing from terminal to starting point is not possible, therefore, on taxi-ways, aircraft run in many cases on their own turbine power which results in high fuel consumption and negative environmental impact. The proposed system picks up the front wheel and combines the tractor and plane as an integrated system so that high speeds (30 km/h) are available under safe conditions. The new tractor can handle current aeroplanes ranging from 100 tons (TU 154) to 380 tons (B 747) with 2 engines of 600 HP. The system structure is a U welded structure containing all the components. A 2 cylinder hydraulic device, electronically controlled, lifts up the aircraft front-wheel in a supporting structure. For the demonstration phase, a considerable number of measurement points will be provided on the tractor and the aeroplane to evaluate the operating conditions from technical and economic point of view. Achievements: In total, Krauss-Maffei has up to now sold eleven PTS 1 units (six to Lufthansa, Frankfurt, two to Lufthansa, Munich under a leasing arrangement, one to United Airlines, San Francisco, two to Japan Airlines, Tokyo-Narita). One PTS 2 is operated by Lufthansa at the new Munich Airport. Negotiations for further purchases in Europe, the Far East and Northamerica are on the way. Towing of aircraft to the take-off with PTS 1 has been successfully practised by Lufthansa in Frankfurt for several months. Introduction of this procedure in big scale is, however, still pending due to operational organizational and legal (not technical) obstacles. Whereas, during development had been assumed that aircraft fuel savings would only be achievable in towing the aircraft to the runway, it has meanwhile been experienced that also maintenance towing is an important source of energy conservation: In San Francisco, PTS 1 is used for replacing maintenance taxiing (with aircraft power) by maintenance towing. This saves the airlines aircraft fuel in the order of nearly one million dollars per year. This leads to a relatively short period for return on investment. Similar values could be expected in Japan. In general, it can be stated that cost-energy and environmental conscious airlines are...
Das Projekt "Tiefflug mit Strahlflugzeugen" wird vom Umweltbundesamt gefördert und von Umwelt-Systeme, Institut für Umweltschutz und Angewandte Ökologie durchgeführt. Analyse des Tieffluges mit Strahlflugzeugen ueber der Bundesrepublik Deutschland. Erarbeitung von Massnahmen zum Abbau von Verdichtungen mit dem Ziel einer Reduzierung der Laermbelastung der Bevoelkerung.
Das Projekt "Quelllärm in Experiment und Numerik" wird vom Umweltbundesamt gefördert und von Airbus Defence and Space GmbH durchgeführt. Das Vorhaben ist Teil des Bundes FREQUENZ. Das Projekt Frequenz hat zum Ziel, einen Beitrag zur Reduktion des Fluglärms in der Zukunft zu leisten. Es konzentriert sich an der Lärmreduktion an der Quelle und fokus. ausgewählte Beispiele aus den Bereich der Zelle aber auch des Triebwerks. Im Projekt soll über die Erarbeitung wissenschaftlicher Grundlagen an ausgewählten Basisexperimenten der Schaffung validierter aero-akustischer Entwurfswerkzeuge erreicht werden, die genutzt werden sollen bei der Umsetzung von Einzelmaßnahmen in flugfähige Lösungen, die dann im Messflug erprobt werden. Das Projekt unter Federführung der Deutschen Lufthansa AG gliedert sich in 3 Teilprojekte mit den Themenschwerpunkten: Teil 1: Berechnung lärmarmer Flugzeugkomponente(Methode und Verfahren), Teil 2: Aerodynamischer Lärm (Basisexperiment und Validierungsdaten). Teil 3: Entwicklung von Nachrüstmaßnahmen für Verkehrsflugzeuge (Anwendung). Es werden zusammen mit den Partnern Berechnungsverfahren zur Vorhersage aeroakustischer Quellen am Flugzeug und dem Immissionspegel am Standort der Betroffenen weiterentwickelt und validiert. Der Antragsteller stärkt und erweitert mit dem Projekt seine Kompetenz an den Gebiet der Fluglärmprognose und der Entwicklung von geeigneten Lärmminderungsmaßnahmen. Die Entwicklung und Erprobung von Nachrüstmaßnahmen zur Lärmreduktion führen zu einem direkt umsetzbaren Technologievorsprung gegen Wettbewerbern.
Das Projekt "Messung von Schiffsabgasen in der marinen Troposphäre (MeSMarT)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. Das Projekt MeSMarT ist eine 2012 geschlossene Kooperation zwischen dem Institut für Umweltphysik (IUP) der Universität Bremen und dem Bundesamt für Seeschiff-fahrt und Hydrographie (BSH), die von dem Helmholtz-Zentrum Geesthacht (HZG) und dem Institut für Umwelt-physik der Universität Heidelberg unterstützt wird, um den Einfluss von Schiffsemissionen auf die Chemie in der marinen Troposphäre zu untersuchen. Ziel der ersten Phase des Projektes (2012-2015) war die Erprobung verschiedener Messtechniken zur Bestimmung der zeitlichen und räumlichen Variabilität von gasförmigen und partikulären Luftschadstoffen aus Schiffsabgasen. Dabei wurden die Spurengaskonzentrationen von Schwefeldioxid (SO2), Stickstoffmonoxid (NO), Stickstoffdioxid (NO2), Kohlendioxid (CO2) und Ozon (O3) mit verschiedenen in-situ Messtechniken an ortsfesten Landstationen (Wedel, Neuwerk) und auf einem Forschungsschiff (Celtic Explorer) gemessen. Weiterhin wurden an diesen Messorten und von einem Flugzeug aus SO2 und NO2 mit Fernerkundungsmethoden unter Anwendung der DOAS-Technik (engl. differential optical absorption spectroscopy) gemessen. Aerosole in der marinen Troposphäre wurden auf Filtern gesammelt und auf Sulfat, Nitrat und organische Komponenten untersucht. Der gewonnene Datensatz diente als Basis für die Modellierung von physikalischen und chemischen Ausbreitungs- und Umwandlungsprozessen in der Troposphäre, um den Einfluss von Schiffsemissionen auf die Küstengebiete und die marine Troposphäre zu verstehen. Bei der Erprobung der ver-chiedenen Messtechniken stellte sich heraus, dass einige Methoden dazu geeignet sind, die Abgasfahnen einzelner Schiffe zu messen und individuell zuzuordnen. Dies kann für eine Unterstützung der Verfolgung von Regelverstößen nach der seit 01.01.2015 verschärften EU-Schwefelrichtlinie für Schiffskraftstoffe und Verstößen nach MARPOL Anlage VI genutzt werden. Aus diesem Grund wird in Phase 2 des MeSMarT Projektes (2015-2018) der Fokus auf die Weiterentwicklung und Automatisierung der in-situ und DOAS Mess- und Analysemethode gelegt. Außerdem wurde an der Messstation Wedel ein aktives Langpfad-DOAS Messsystem installiert, um auch bei schlechten Lichtverhältnissen und ungünstigen Windbedingungen präzise Messungen durchführen zu können.
Das Projekt "Berechnung von koaxialem Fluglärm" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. The principle objective of CoJeN is to develop and validate prediction tools that can be used by the aerospace industry to assess and optimise jet-noise reduction techniques. CoJeN will deliver the enabling technology to allow European Aerospace industries to:- Design lower-noise aircraft to meet societys needs for more environmentally friendly air transport- Win global leadership for European aeronautics, with a competitive supply chain more specifically, CoJeN will deliver the methods for designing concepts and technologies for the reduction of aero-engine jet noise, whilst improving industrys ability to competitively develop new products and reduce development time and costs. In order to bring the fundamental work of the FP5 project JEAN (which looked at prediction of single-stream jet noise) and other programmes to the point where they are useful to industry, the methods developed therein must be extended to cope with hot coaxial jets and arbitrary nozzle geometries. The methods must also be validated to demonstrate their accuracy and reliability. Accordingly, the specific technical objectives of the project are to:- Identify and improve optimal CFD techniques for the prediction of jet flow development from coaxial nozzles of arbitrary geometry- Develop aeroacoustic codes which can predict the acoustic fields from the CFD results- Acquire aerodynamic and acoustic data with which to validate these codes to achieve these objectives, two approaches will be considered. The first is the classical indirect technique in which the turbulent flow field is characterised using a CFD solver and the acoustic modelling uses information extracted from the spatially-resolved turbulence field (local intensity and length scales of the turbulence) to predict the far field noise. The second is the direct computational approach in which Large Eddy Simulation (LES) methods will be used to determine the near field noise and then linked to a propagation model for the far field signature. Prime Contractor: QinetiQ Limited London UK.
The German aircraft noise calculation model AzB (Anleitung zur Berechnung von Lärmschutzbereichen) has been developed for defining noise protection areas by assessing the noise of a predicted air traffic scenario. The AzB data base was specially designed for this purpose and it consists of 36 aircraft classes comprising civil and military jet aircraft as well as propeller-driven aircraft and helicopters. In the last decades the traffic mix has changed considerably. The share of aircraft complying with ICAO Annex 16, chapter 3 in the total air traffic volume has â€Ìat least in Germany - almost fallen to zero, whereas several aircraft with significantly lower noise emissions have been put into service. Advances in noise mitigation have also been achieved due to optimized flight operations (noise abatement departure procedures suiting to population structure, CDO, steeper approach...) Although parts of the AzB were revised and amended in 2006/2007 , its data base corresponds essentially to that published by the German Environment Agency (UBA) in 1999. The acoustic and operational data of the AzB are of limited suitability as a means of representing new and prospective aircraft types. To meet the requirements for accuracy and to achieve good accordance with measurements, the German Aerospace Center (DLR) is updating the data base of the AzB on behalf of the German Environment Agency. In this contribution an overview of the recent developments is given and first results of the research project are presented. Quelle: https://icsv26.sched.com
Origin | Count |
---|---|
Bund | 61 |
Type | Count |
---|---|
Förderprogramm | 60 |
unbekannt | 1 |
License | Count |
---|---|
open | 60 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 60 |
Englisch | 18 |
Resource type | Count |
---|---|
Keine | 50 |
Webseite | 11 |
Topic | Count |
---|---|
Boden | 38 |
Lebewesen & Lebensräume | 41 |
Luft | 61 |
Mensch & Umwelt | 61 |
Wasser | 36 |
Weitere | 61 |