API src

Found 172 results.

Related terms

Willingmann zeichnet NOVO-TECH aus Aschersleben mit AURA-Award aus

Wohin mit Rotorblättern alter Windkraftanlagen? Auf diese keineswegs einfache Frage hat die NOVO-TECH Circular GmbH & Co. KG aus Aschersleben eine innovative Antwort gefunden. Das Unternehmen hat zwischen 2021 und 2023 eine Aufbereitungsanlage errichtet, mit der die Rotorblätter, die zumeist aus Faserverbundstoffen bestehen, recycelt werden können. Aus den Rotorblättern gewinnt das Unternehmen nun Kunstharze, die wiederum im selbstentwickelten Holzwerkstoff weiterverarbeitet werden. Der nachhaltige Werkstoff wird etwa zur Herstellung von Terrassendielen, Zäunen und Fassaden genutzt. Umweltminister Prof. Dr. Armin Willingmann hat NOVO-TECH daher am heutigen Mittwoch mit dem „AURA-Award für nachhaltiges Unternehmertum“ ausgezeichnet. „NOVO-TECH zeigt mit seinem klima- und ressourcenschonenden Holzwerkstoff sowie dem Recyclingverfahren beispielhaft auf, wie nachhaltiges Unternehmertum aussehen kann. Nachhaltig hergestellte Produkte werden in Zeiten des Klimawandels zu einem zentralen Erfolgsfaktor für Unternehmen – das hat NOVO-TECH erkannt und sich zu einem echten Vorreiter entwickelt“, erklärte Willingmann. „Mit dem AURA-Award wollen wir innovative Unternehmen wie NOVO-TECH in das verdiente Rampenlicht rücken und aufzeigen, dass es sich für Unternehmen lohnt, auf Nachhaltigkeit zu setzen.“ Das Hauptprodukt von NOVO-TECH ist der umweltfreundliche und recyclebare Naturwerkstoff GCC (German Compact Composite) mit einem Naturfaseranteil von 75 Prozent. Er wird aus Restholz der regionalen Hobel- und Sägeindustrie sowie mit Granulat aus Kunststoffen erster Industrieanwendung sowie recyceltem Kunstharz produziert. Aus dem wiederverwertbaren Werkstoff werden Produkte wie Zäune und Fassaden vermarktet. NOVO-TECH achtet bei der Vermarktung der Produkte ebenfalls auf das Prinzip der Kreislaufwirtschaft und des Ressourcenschutzes: so bietet das Unternehmen statt dem klassischen Kaufvertrag den Abschluss eines Nutzungsvertrages auf Basis des Nießbrauchs an. Der Kunde erwirbt dabei das Nutzungsrecht über die gewünschten Produkte, der Hersteller bleibt aber Eigentümer des Materials und verpflichtet sich, dieses nach 20- bis 30-jähriger Laufzeit wieder zurückzunehmen und dem Stoffkreislauf zuzuführen. NOVO-TECH hat seinen Werkstoff hierfür auch einer unabhängigen Zertifizierung unterzogen („Cradle to Cradle Certfied“), die unter anderem die Kreislauffähigkeit des Werkstoffs und der gesamten Produktpalette bestätigt. „Wir sind sehr stolz darauf, dass wir mit dem AURA-Award geehrt werden“, erklärte der Geschäftsführer von NOVO-TECH, Holger Sasse. „Unser Engagement für die Kreislaufwirtschat nach dem Cradle to Cradle Design Konzept findet somit Anerkennung. Wir sind dem Land Sachsen-Anhalt und auch der Kommune zu Dank verpflichtet, da wir dort Unterstützung in allen Stufen unserer Entwicklung erhalten haben.“ Mit der neuen Aufbereitungsanlage „NOVO-TECH Circular“ will das Unternehmen künftig bis zu 43.000 Tonnen seines Werkstoffs pro Jahr herstellen. Durch den Einsatz recycelter Materialien sowie der konsequenten Kreislaufwirtschaft will das Unternehmen nach eigenen Angaben etwa 200.000 Tonnen CO₂-Äquivalente pro Jahr binden. Aktuell arbeitet das Unternehmen noch weiter an der Optimierung der Prozesse, damit die Aufwendungen für Produkte im Kreislauf geringer ausfallen als die für Neuware. „Kreislaufwirtschaft ist erst richtig erfolgreich, wenn Produkte mit besseren Eigenschaften auch bessere Preise - im Gegensatz zu der Linearwirtschaft - aufweisen können“, erläuterte Sasse. Der erste Schritt dafür sei bereits gesetzt: mit der Terrassendiele Classic HARZart habe das Unternehmen ein innovatives Produkt mit zusätzlichen Materialeigenschaften und 10 Prozent niedrigeren Kosten für den Kunden entwickelt. In den kommenden Jahren will NOVO-TECH zudem 50 Prozent seines Energiebedarfs durch die Stromproduktion mit eigenen Photovoltaikanlagen decken. Den Unternehmenspreis „AURA“ gibt es bereits seit 2013. Nach einer mehrjährigen pandemiebedingten Unterbrechung wird die Auszeichnung mit neuem inhaltlichen Fokus und in modernem Design im Umwelt- und Klimaschutzministerium fortgeführt. Mit dem Preis verbunden ist der AURA-Award aus nachhaltig produziertem heimischen Holz, ein Imagefilm im Wert von rund 3.000 Euro sowie eine Urkunde. Der Preis wird im Rahmen eines medienöffentlichen Besuchs durch den Minister überreicht. Für „AURA“ infrage kommen kleine und mittelständische Unternehmen, die eine eigenständige Niederlassung in Sachsen-Anhalt haben. Ihre besondere Leistung im Bereich Nachhaltigkeit muss anhand von Daten nachweisbar sein. Wer mit dem Unternehmenspreis „AURA“ schon einmal ausgezeichnet wurde, hat mit neuen Produkten oder Verfahren die Chance auf einen weiteren Award. Die nächste Bewerbungsrunde wird das Umweltministerium voraussichtlich im Oktober 2024 eröffnen. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X

Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation - part 2 sedimentary rocks

Abstract

Umwelt-Staatssekretär Tidow eröffnet Waldspielplatz im Grunewald

Stefan Tidow, Staatssekretär für Umwelt und Klimaschutz, hat heute gemeinsam mit dem Leiter der Berliner Forsten, Gunnar Heyne, den Waldspielplatz Fischerhüttenweg im Grunewald wiedereröffnet. Er wurde in den vergangenen Monaten überarbeitet, erneuert und erweitert. Der Waldspielplatz liegt in einem attraktiven Erholungs- und Erlebnisschwerpunkt der Berliner Forsten – stadtnah zwischen Badestellen an Krumme Lanke und Schlachtensee und im Hundeauslaufgebiet. Seine Spielgeräte sind auf die Bedürfnisse von Kindern aller Altersgruppen zugeschnitten und machen ihn zu einer attraktiven Erholungseinrichtung für die ganze Familie. Stefan Tidow, Staatssekretär für Umwelt und Klimaschutz : „Die Berliner Waldspielplätze wecken das Interesse an der Natur, indem sie positive Walderlebnisse schaffen: In natürlicher Umgebung können Kinder die Vielfalt der Natur spielerisch entdecken und schätzen lernen, zugleich erleben sie den nachhaltigen Naturwerkstoff Holz, der hier aus ökologisch zertifizierten Beständen kommt. Die Berliner Forsten bieten mit ihren Waldspielplätzen wie dem am Fischerhüttenweg Ausflugsziele für die ganze Familie – und machen dabei ganz nebenbei auf den unschätzbar hohen Wert des Waldes für die Lebensqualität in Berlin aufmerksam.“ Das für die Erneuerung des Waldspielplatzes Fischerhüttenweg benötigte Eichen- und Robinienholz stammt überwiegend aus den reviereigenen Ressourcen. Die vorhandenen Spielelemente, Fußballtore und Sitzgelegenheiten wurden grunderneuert und aufgebaut – neues Highlight ist eine Kletterkugel aus Kronenholz. Insgesamt 14 Waldspielplätze bieten die Berliner Forsten als Bereicherung des Erholungswaldes an. Sie werden fachgerecht durch erfahrene Mitarbeitende der Berliner Forsten erbaut und regelmäßig überarbeitet. Die Einrichtungen sind durch den TÜV abgenommen und unterliegen regelmäßigen Sicherheitsüberprüfungen durch die Forstämter.

Recycling von Kunststoffen aus technischen Produkten

Das Projekt "Recycling von Kunststoffen aus technischen Produkten" wird vom Umweltbundesamt gefördert und von Fachhochschule Südwestfalen, Fachbereich Maschinenwesen durchgeführt. Durchfuehrung von Produktanalysen der zu verwertenden Bauteile bzw. Artikel auf deren Recyclingfaehigkeit (Eingesetzte Kunststoffe, Verbindungstechniken, Verschmutzungsgrade, Oberflaechenbehandlungen etc.), Erarbeiten von Demontagekonzepten fuer im Umlauf befindliche Artikel (Handdemontage, Schreddern mit automatischer Trennung, Reinigen von kompletten Bauteilgruppen etc.), Durchfuehrung von Untersuchungen zur Wiederverwertung von gebrauchten Kunststoffen (Rueckfuehrungslogistiken, Aufbereitungstechniken, Beimischungen), Unterstuetzung bei Neuentwicklungen recyclinggerechter Produkte (Verringerung der Sortenvielfalt, Kennzeichnung, Demontagegerechte Konstruktion etc.)

In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP

Das Projekt "In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.

Quantification of the influence of current use fungicides and climate change on allochthonous Organic MATer decomposition in streams (QUANTOMAT)

Das Projekt "Quantification of the influence of current use fungicides and climate change on allochthonous Organic MATer decomposition in streams (QUANTOMAT)" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften durchgeführt. The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.

Entwicklung von Aktivmaterialien für organische Batterien basierend auf elektropolymerisierten Polymeren mit stabilen organischen Radikalen

Das Projekt "Entwicklung von Aktivmaterialien für organische Batterien basierend auf elektropolymerisierten Polymeren mit stabilen organischen Radikalen" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie durchgeführt. Heutige Batterietechnologien basieren hauptsächlich auf Metallen wie Lithium, Blei, Kobalt oder Nickel. Deren begrenztes natürliches Vorkommen sowie Toxizität und die daraus resultierenden Entsorgungsprobleme schränken jedoch die langfristige Verwendung solcher Metalle ein. Als Alternative haben sich im Rahmen jüngster Forschungen polymere Verbindungen, also Kunststoffe, herausgestellt. In diesem Zusammenhang wurden insbesondere Polymere, die stabile organische Radikale enthalten, intensiv untersucht und zeigten vielversprechende Ladungsspeichereigenschaften, insbesondere eine überlegene Redoxkinetik. Solche Materialien leiden jedoch unter unzureichender elektrischer Leitfähigkeit, die die anwendbaren Lade- und Entladeraten begrenzt, wodurch die vorteilhaften Elektronentransfereigenschaften aufgehoben werden. Ein vielversprechender Ansatz zur Überwindung dieses Problems ist der Einbau von leitfähigen, d.h. konjugierten Polymeren. Diese Materialien bieten mehrere vorteilhafte Eigenschaften, die für eine organische Batterie ausgenutzt werden können: (i) Als Halbleiter zeigen sie elektrische Leitfähigkeit; (ii) sie können durch Elektropolymerisation hergestellt werden und bieten so eine effiziente Möglichkeit, direkt auf Elektrodenoberflächen abgeschieden zu werden; (iii) sie bieten intrinsische Ladungsspeicherfähigkeit. Allerdings zeigen Systeme, die auf der eigenen Speicherfähigkeit von konjugierten Polymeren basieren häufig driftende Lade- und Entladespannung, was deren Anwendungspotenzial erheblich einschränkt. In Kombination mit stabilen Redoxeinheiten, die die Ladungsspeicherung übernehmen, wie organische Radikale, können aber die elektrische Leitfähigkeit sowie die elektrochemische Verarbeitbarkeit zu vielversprechenden Batterieaktivmaterialien führen. Trotzdem wurden bisher nur wenige solche Beispiele in der Literatur vorgestellt. Daher soll im Rahmen dieses Projekts die Palette organischer Batteriematerialien durch die Kombination stabiler organischer Radikale mit elektropolymerisierbaren Einheiten erweitert werden, um Systeme herzustellen, die sowohl verbesserte elektrochemische Stabilität als auch elektrische Leitfähigkeit bieten.

SO299/2 - BIO-OBS_2023: Erhebung bio-optischer 'Unterwegs'-Forschungsdaten im Indischen Ozean mit 'State-of-the-Art' Beobachtungsmethoden

Das Projekt "SO299/2 - BIO-OBS_2023: Erhebung bio-optischer 'Unterwegs'-Forschungsdaten im Indischen Ozean mit 'State-of-the-Art' Beobachtungsmethoden" wird vom Umweltbundesamt gefördert und von Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres durchgeführt. Sonnenlicht ist eine Grundvoraussetzung für das Leben, es ermöglicht u.a. die Photosynthese und damit die aquatische Primärproduktion, die wiederum die Grundlage für höhere Ebenen des Nahrungsnetzes bildet. Daher ist ein genaues Verständnis der Verteilung und spektralen Qualität des Lichtes in der Wassersäule von entscheidender Bedeutung. Die Abschwächung des Lichts im Wasser hängt in erster Linie von den enthaltenen optisch aktiven Substanzen ab. Dies sind im wesentlichen Phytoplankton, farbiges gelöstes organischer Material (chromophoric dissolved organic material; CDOM) sowie Nicht-Algen Partikel. Da sie die optischen Eigenschaften des Wassers beeinflussen, können bio-optische Beobachtungen wiederum genutzt werden, um Informationen über diese Parameter liefern. Demzufolge sind hyperspektrale optische Messverfahren wesentliche Elemente der modernen Meeresbeobachtung und unterstützen mit hochauflösenden Datensätzen sowohl Grundlagenforschung als auch angewandte Forschung (z.B.Satellitenbeobachtungen oder bio-optische Modellierung). Ziel der Teilnahme an der Expedition SO299/2 von Singapur nach Mauritius ist es, die bio-optischen Eigenschaften der oberen Ozeanschicht im Indischen Ozean hochaufgelöst zu erfassen (sowohl zeitlich als auch spektral). Dies ermöglicht eine bio-optische Charakterisierung der Transitstrecke, welche u.a. auch mit Satellitenfernerkundungsinformationen in diesem Areal zu Validierungszwecken abgeglichen werden können (z.B.im Kontext zukünftiger hyperspektraler Satellitenmissionen). Darüber hinaus können die gemessenen bio-optischen Parameter und abgeleiteten Variablen zum Verständnis der Dynamik und Prozesse im Indischen Ozean beitragen. Des Weiteren unterstützt das Vorhaben das 'Unterwegs'-Forschungsdatenprojekt im Kontext der Deutschen Allianz Meeresforschung (DAM), indem während der Transitstrecke Labormessungen an Wasserproben aus dem schiffseigenen Seewassersystem genommen werden, um dessen kontinuierliche Messungen zu validieren.

EnOB: Nachwachsende Bau- und Werkstoffe für die Kreislaufwirtschaft

Das Projekt "EnOB: Nachwachsende Bau- und Werkstoffe für die Kreislaufwirtschaft" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Forschungsbereich Nachwachsende Rohstoffe durchgeführt. Langlebige nachhaltige Baumaterialien gelten als CO2-Senken und geben somit die Möglichkeit, sowohl neuartige sowie nachhaltige Bau- und Werkstoffe zu erstellen, wobei sie die Energiebedarfe und CO2-Emmissionen der Gebäude sowie der verwendeten Materialien senken. Im Rahmen des geplanten Vorhabens sollen hochdämmende Bau- und Werkstoffe aus Nachwachsenden Rohstoffen entwickelt werden, die grundsätzlich ohne erdölbasierte Produkte mechanische Stabilität, geringe Leitfähigkeit und Widerstandsfähigkeit gegen Umwelteinflüsse verbinden. Der Bautenschutz ohne den Eintrag von umweltbelastenden Substanzen erlaubt ein Cradle-to-Cradle Recycling und eine Kompostierbarkeit als Beitrag zu kreislaufgerechtem Bauen. Basis für diese neuartigen 'Nachwachsenden Bau- und Werkstoffe' (HydroPhiber) sollen ausgewählte schnellwachsende Kulturen sein, die eine hohe und qualitativ interessante Biomasse liefern sowie im Laufe ihres jährlichen Wachstums erhebliche Mengen an CO2 binden. Diese, innerhalb des Projektes speziell aufbereitete Biomasse, gilt es dann mit optimaler Porenstruktur zu erhalten, um hohe Dämmeigenschaften zu gewährleisten. Ebenso dürfen die verarbeiteten, biobasierten Bau- und Werkstoffe auch später keine Feuchtigkeit aufnehmen um einen Schimmelbefall auszuschließen. Im Sinne der förderpolitischen Ziele soll die eigenschaftserhaltende Funktionalität der Hydrophobierung von bisher getesteten energieintensiven, nur schwer recyclebaren Mitteln, wie Silanen, Siloxanen oder Acrylaten durch ressourceneffizientere und auf natürlichen Ressourcen beruhenden Stearate ersetzt werden. Weiterhin wird das kreislaufgerechte Bauen durch natürliche Werkstoffe und ein bindemittelfreies Heißpressverfahren erhalten. In diesem geplanten Vorhaben sollen die Nachwachsenden Rohstoffe (Miscanthus x giganteus und Paulownia ssp.) sowie anfallende Reststoffe (Fichtenholz) als Basismaterial für neuartige Bau- und Werkstoffe verwendet werden.

Teilvorhaben: Implementierung der hydrophoben Eigenschaften in das Biomassensystem

Das Projekt "Teilvorhaben: Implementierung der hydrophoben Eigenschaften in das Biomassensystem" wird vom Umweltbundesamt gefördert und von Peter Greven GmbH & Co. KG durchgeführt. Langlebige nachhaltige Baumaterialien gelten als CO2-Senken und geben somit die Möglichkeit, sowohl neuartige sowie nachhaltige Bau- und Werkstoffe zu erstellen, wobei sie die Energiebedarfe und CO2-Emissionen der Gebäude sowie der verwendeten Materialien senken. Im Rahmen des geplanten Vorhabens sollen hochdämmende Bau- und Werkstoffe aus Nachwachsenden Rohstoffen entwickelt werden, die grundsätzlich ohne erdölbasierte Produkte mechanische Stabilität, geringe Leitfähigkeiten und Widerstandsfähigkeit gegen Umwelteinflüsse verbinden. Der Bautenschutz ohne den Eintrag von umweltbelastenden Substanzen erlaubt ein Cradle-to-Cradle Recycling und eine Kompostierbarkeit als Beitrag zu kreislaufgerechtem Bauen. Das kreislaufgerechte Bauen wird durch natürliche Werkstoffe und ein bindemittelfreies Heißpressverfahren erhalten. Basis für diese neuartigen 'Nachwachsenden Bau- und Werkstoffe' (HydroPhiber) sollen ausgewählte schnellwachsende Kulturen sein, die eine hohe Menge und qualitativ interessante Biomasse liefern sowie im Laufe ihres jährlichen Wachstums erhebliche Mengen an CO2 binden. Diese, innerhalb des Projektes speziell aufbereitete Biomasse, gilt es dann mit optimaler Porenstruktur zu hydrophobieren und zu formen, um umweltverträgliche hohe Dämmeigenschaften zu gewährleisten. Die verarbeiteten, biobasierten Bau- und Werkstoffe dürfen auch später keine Feuchtigkeit aufnehmen um einen Schimmelbefall auszuschließen. Im Sinne der förderpolitischen Ziele soll die eigenschaftserhaltende Funktionalität der Hydrophobierung von bisher getesteten energieintensiven, nur schwer recyclebaren Mitteln, wie Silanen, Siloxanen oder Acrylaten durch ressourceneffizientere und auf natürlichen Ressourcen beruhenden Stearate ersetzt werden. In diesem geplanten Vorhaben sollen die Nachwachsenden Rohstoffe (Miscanthus x giganteus und Paulownia ssp.) sowie anfallende Reststoffe (Fichtenholz) als Basismaterial für neuartige Bau- und Werkstoffe verwendet werden.

1 2 3 4 516 17 18