Das Projekt "Verknüpfung von Cosmic Ray Neutron Sensing (CRNS) mit aktiven und passiven Fernerkundungsdaten" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Landschaftsarchitektur und Umweltplanung (ILaUP) durchgeführt. Direkte lokale Beobachtungen des Bodenfeuchtegehalts (BFG) mit in-situ Messgeräten sind derzeit aufgrund der hohen räuml. und zeitl. Variabilität nur eingeschränkt nutzbar. Fernerkundungsdaten können mit verschiedenen Methoden verwendet werden, um tägliche Daten mit einer groben räumlichen Auflösung zu liefern. Für viele regionale Anwendungen werden jedoch Produkte mit einer räumlichen Auflösung von ca. 10 bis 30 m benötigt. Der Kontrast zwischen dem punktuellen Charakter aktueller terrestrischer Bodenfeuchtemessungen und der Bodenauflösung von Satelliten, die zur Bestimmung der Bodenfeuchte eingesetzt werden, stellt eine große Herausforderung für die Kalibrierung und Validierung von Produkten aus Satellitenmissionen dar. CRNS eröffnet Chancen, dieses Defizit zu überwinden. Das Upscaling von CRNS-Daten ist jedoch schwierig, da die CRNS-Messung ein integriertes Signal über eine Grundfläche mit ca. 200m Radius ist. Zudem ist die Messung sehr anfällig für zusätzliche Wasserquellen speziell der ober- und unterirdischen Biomasse. Das Bodenfeuchtesignal muss daher von den Wasserquellen separiert werden. Unser wissenschaftliches Ziel ist es, die prozessbasierten Zusammenhänge zwischen dem aus CRNS abgeleiteten BFG und der oberflächenbasierten aber räumlich detaillierteren Berechnung des BFG mit verschiedenen Fernerkundungssensoren (thermisch, hyper-, multispektral, SAR und LiDAR) zu verstehen. Zu diesem Zweck werden Vegetationsparameter (texturelle, strukturelle, emissive und reflektierende) von verschiedenen aktiven und passiven Sensoren abgeleitet und auf ihre Eignung für die Ableitung des BFG in singulären und synergistischen Beobachtungen getestet. Dies wird entsprechend den räumlichen und zeitlichen Skalen der CRNS-Messungen, insbesondere in den Teilprojekten (TP) Großfl. CRNS-Netzwerk und Mobiles CRNS, umgesetzt. Die Abschätzung des BFG der Landbedeckung durch hochauflösende Fernerkundungsparameter wird zu einer besseren Korrekturfunktion des CRNS-Signals bei der Berechnung des BFG beitragen. Mit dem Modul wollen wir einen Schritt in Richtung einer großflächigen Übertragung von dem aus CRNS abgeleiteten BFG gehen. Dieses TP wird die Lücke zwischen verschiedenen räumlichen und zeitlichen Skalen bei der Ableitung des BFG schließen. Für die Berechnung von Wasserquellen werden Vegetations- und oberflächennahe BFG-Daten für die TPs Großfl. CRNS-Netzwerk, Mobiles CRNS, Hydrogeodäsie und Vegetation zur Verfügung gestellt. CRNS-Messungen aus gemeinsamen Feldkampagnen werden zur Validierung von den aus Fernerkundungsdaten abgeleiteten Bodenfeuchteprodukten verwendet. Die TPs Hydrogeodäsie, Großfl. CRNS-Netzwerk und Mobiles CRNS werden die aus der Fernerkundung abgeleiteten räumlich hochaufgelösten Bodenfeuchtemuster nutzen, um die intergierten CRNS und GNSS-R Beobachtungen besser zu verstehen. Die TPs Hydrol. Modellierung und Grundwasserneubildung planen die Implementierung der abgeleiteten BFG-Karten in ihre Modelle.
Das Projekt "High-coverage CRNS application as network to target an areas' water distribution for periods of special field campaigns" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Die obere Bodenzone ist die zentrale Schnittstelle für die Speicherung und den Transfer von Wasser zwischen der Atmosphäre, der Biosphäre, den Oberflächengewässern und dem tieferen Untergrund. Die räumliche und zeitliche Variabilität seiner Eigenschaften und Zustände ist eine Herausforderung für das Verständnis und für die Quantifizierung des Wasserspeichers und daraus resultierender Wasserflüsse. Die Bestimmung der Bodenfeuchte ist entweder großflächig oder in Teilstücken der Einzugsgebiete möglich, dazu gehören hydrogeophysikalische Methoden (bodengestützt), verschiedene Fernerkundungsmethoden (Drohnen, Flugzeuge und Satelliten) oder invasive Bodenfeuchte-Netzwerke. Sie sind jedoch entweder nur durch zeitliche Momentaufnahmen begrenzt oder zu teuer, um auf ganze Einzugsgebiete oberhalb der Feldskala übertragen werden zu können. Bisher wurde die Methode der Detektion von Schwankungen des Neutronenhintergrunds (CRNS) als integrierende Messung der Bodenfeuchte in einer Fläche von ca. 15 Hektar eingesetzt. Verteilte Netzwerke dieser Sensoren gibt es bereits bis auf nationaler Ebene, jedoch mit Sensorabständen, die sehr viel größer sind als die CRNS-Integrationsfläche. Unser Ziel ist es, zeitliche Veränderungen des in Boden und Vegetation gespeicherten Wassers mit vollständiger Abdeckung auf der Skala von kleinen Einzugsgebieten bzw. hydrologischen Grundeinheiten (z.B. 1-10 km2), mit räumlicher Auflösung von wenigen Hektar und dichtem Abstand, vergleichbar mit der CRNS Integrationsfläche, zu messen. Dadurch lassen sich der nicht-invasive Charakter sowie die hohe Mobilität der CRNS-Sonden voll ausnutzen und kontinuierliche Bodenfeuchtekarten über einige Monate hinweg in einem bestimmten Gebiet erfassen. Dies wird eine raum-zeitliche Verteilung der Bodenfeuchte auch für landwirtschaftliche Felder und Waldstücke mit zeitlicher Auflösung im Stundenbereich liefern. Diese Messungen sollen auch zur Erprobung eines neu entwickelten Aufbaus einer CRNS Sonde mit winkelabhängiger Auflösung verwendet werden. Die geplanten Feldkampagnen sind ideal, um Daten für den Vergleich zu anderen Messmethoden (z.B. mobilem CRNS, Drohnenüberfliegungen) und zu hydrologischen Modellen zur Verfügung zu stellen. Die zu erfassenden Muster der raum-zeitlichen Variabilität bilden die Grundlage für die quantitative Beschreibung des Wasserhaushalts und hydrologischer Prozesse im Einzugsgebiet. Und durch eine örtliche Erweiterung des CRNS-Netzes könnte sie sogar in Zukunft auf größere Gebiete (z.B. größer als 10 km2) ausgedehnt werden. Dieses Teilprojekt wird eine Schlüsselrolle bei der Kartierung der Bodenfeuchte in kleinen Einzugsgebieten während der gemeinsamen Feldkampagnen der Forschergruppe sein. Insgesamt wird es erste CRNS-Bodenfeuchte-Karten auf einer Skala liefern, die mindestens eine Ordnung über den bestehenden Boden-Sensor-Netzwerken liegt.
Das Projekt "Highly-resolved imaging in artificial and natural soils to yield dynamics and structure of interfaces from oxygen, pH and water content" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Erd- und Umweltwissenschaften durchgeführt. In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids, nutrients and pollutants. Both sides are closely related and affect each other from small scale to larger scale. Soil structures such as aggregates, roots, layers, macropores and wettability differences occurring in natural soils enhance the patchiness of these distributions. At the same time the spatial distribution and temporal dynamics of these important parameters is difficult to access. By applying non-destructive measurements it is possible to overcome these limitations. Our non-invasive fluorescence imaging technique can directly quantity distribution and changes of oxygen and pH. Similarly, the water content distribution can be visualized in situ also by optical imaging, but more precisely by neutron radiography. By applying a combined approach we will clarify the formation and architecture of interfaces induces by oxygen consumption, pH changes and water distribution. We will map and model the effects of microbial and plant root respiration for restricted oxygen supply due to locally high water saturation, in natural as well as artificial soils. Further aspects will be biologically induced pH changes, influence on fate of chemicals, and oxygen delivery from trapped gas phase.
Das Projekt "Messung von Bodenwasser und Schnee mittels nicht-invasiver Detektion von Neutronen an der Landoberfläche (CRNS) zur Bestimmung von Grundwasserneubildung auf Feldskala bis hin zur Größe von Kleineinzugsgebieten" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Umweltwissenschaften und Geographie, Arbeitsgruppe Wasser- und Stofftransport in Landschaften durchgeführt. Grundwasserneubildung ist eine wichtige Komponente des natürlichen Wasserkreislaufs, die eine zentrale Bedeutung für die nachhaltige Nutzung der Grundwasserressourcen hat. Zukünftige Landnutzungsänderungen und Verschiebungen durch den Klimawandel erfordern mehr denn je detailliertes Wissen über räumliche Verteilung, Intensität und zeitliche Variabilität der Grundwasserneubildung, ebenso, wie der Eintrag von Düngemitteln und Agrochemikalien ins Grundwasser. Ihre Abschätzung und Messung ist jedoch schwierig, da sie räumlich und zeitlich sehr variabel ist, große Gebiete betrifft und nicht direkt von der Landoberfläche messbar ist. Die Anwendung von Messungen des natürlichen Neutronenhintergrunds an der Landoberfläche (CRNS) könnte erstmalig konkret dazu genutzt werden, Grundwasserneubildungsraten für größere Flächen als bisher abzuschätzen. Durch die hohe Sensitivität und die räumliche Mittelung der Methode kann nicht nur die Dynamik der Bodenfeuchte im Oberboden repräsentativ und nicht-invasiv erfasst werden, sondern ebenso Schnee, der als saisonaler Wasserspeicher einen relevanten und kurzfristigen Beitrag zur Grundwasserneubildung liefern kann. Die Forschungsfragen dieses Teilprojekts der Forschergruppe 'Cosmic Sense' konzentrieren sich darauf, 1) wie die gewonnenen CRNS Daten zur Abschätzung der Grundwasserneubildung eingesetzt werden können, auch wenn mit CRNS allein bisher noch keine komplette Wasserbilanz des gesamten Bodenkompartiments möglich ist; 2) diese Abschätzung bei der experimentellen Untersuchung mehrerer, unterschiedlicher Standorte einzusetzen und zu validieren; und 3) über CRNS erstmalig auch Schnee in die Bilanzierung einzubeziehen und Schneewasseräquivalente für hydrologische Modelle zur Verfügung zu stellen. Für die Interpretation der experimentellen Daten werden sowohl die Ergebnisse eindimensionaler Simulationen der Bodenwasserströmung herangezogen als auch der Vergleich mit einer hydrogeophysikalischen Messung der Wasserverteilung im Boden bis zum Grundwasser (in einem anderen Teilprojekt). Bei den beiden Großversuchskampagnen der Forschergruppe wird die Grundwasserneubildung für das am jeweiligen Standort (in einem anderen Teilprojekt) installierte großflächige CRNS-Bodenfeuchte-Netzwerk über diese Methodik ermittelt. Die räumliche Verteilung und zeitliche Dynamik der Grundwasserneubildungsrate wird dann in einem numerischen Grundwassermodell für das Gebiet zusammengeführt und beides wird zur Überprüfung der Gesamtwasserbilanz des Gebietes im jeweiligen Großversuch dienen.
Das Projekt "Erfassung von Vegetation und anderen zeit-variablen Wasserstoffpools an der Landoberfläche" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Es ist allgemein bekannt, dass andere Wasserstoffpools neben Bodenfeuchte die Neutronenzählrate von 'cosmic-ray neutron sensing' (CRNS) Detektoren beeinflussen. Bisher wurden diese zusätzlichen Pools meist als störende Einflüsse betrachtet, die korrigiert werden müssen. Dafür wurden verschiedene Ansätze zur Korrektur von Wasserstoff entwickelt, welcher zum Beispiel im Kristallwasser, in der organischen Substanz des Bodens, in der Atmosphäre oder in der Biomasse gespeichert ist. Es wurde gezeigt, dass solche Korrekturen wesentlich sind, um die Genauigkeit der mit CRNS erhaltenen SWC-Schätzungen zu verbessern. Aktuelle Publikationen zeigen, dass das Verhältnis von thermalen zu schnellen Neutronen (Nr) zur Schätzung von Biomasse genutzt werde kann und außerdem Informationen zu zeit-variablen Wasserstoffpools enthält. Beides soll im Rahmen des Forschungsmoduls VG untersucht werden. Das Projekt verfolgt zwei Hauptziele. Zunächst wollen wir universell gültige Methoden zur Korrektur von CRNS-basierten Bodenfeuchtemessungen für den Einfluss von zeit-variablen Wasserstoffpools wie Biomasse und Interzeption entwickeln. Dazu werden empirische Funktionen basierend auf zusätzlichen Messungen, wie Pflanzenparametern und Throughfall, getestet und kalibriert. Diese Messungen werden mit einem gekoppelten Boden-Vegetations-Modell integriert, das außerdem die Simulation des Interzeptionsspeichers ermöglicht. Zweitens, wollen wir Methoden entwickeln, um die Wasserstoffpools direkt aus dem CRNS-Signal - ohne zusätzliche Messungen und Kalibrierung - zu schätzen. Dazu werden wir die Verwendung des Nr untersuchen. Unter Verwendung geeigneter Neutronenenergie-Korrekturen werden wir verbesserte thermale und epithermale Neutronen-Signale erhalten, was eine bessere Untersuchung von Biomasse- und Interzeptionseffekten auf das Nr-Signal ermöglicht. Um diese Ziele zu erreichen, werden wir drei Arten von Feldexperimenten durchführen: a) dedizierte kontinuierliche Experimente an repräsentativen landwirtschaftlichen Standorten, b) Feldmesskampagnen einer Vielzahl von Feldern mit verschiedenen Nutzpflanzen mit dem Jülich Cosmic Rover und c) Analyse von Neutronen- und Biomassedaten aus dem bestehenden TERENO CRNS-Netzwerk. Die Messungen im Rahmen der Feldexperimente werden durch bodenhydrologische Modellierungen ergänzt, um Referenzinformationen mit verbesserter räumlicher und zeitlicher Auflösung zu erhalten (z.B. vertikale Verteilung von Bodenfeuchte im Profil; Auftreten von Stauwasser auf der Bodenoberfläche).Das Forschungsmodul VG wird gemessene Vegetationsparameter für die gemeinsamen Feldkampagnen (JFC) liefern, die insbesondere von RV, MC, HG und RS benötigt werden. In Zusammenarbeit mit NS wird der Einfluss von Biomasse und Interzeption auf das Nr modelliert. Durch DD verbesserte CRNS-Sensoren, werden für eine verbesserte Quantifizierung der Interzeption verwendet.
Das Projekt "Koordinationsfonds" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Umweltwissenschaften und Geographie, Arbeitsgruppe Wasser- und Stofftransport in Landschaften durchgeführt.
Das Projekt "Hydrogeodäsie - CRNS Tiefenskalierung durch Kombination nichtinvasiver Messverfahren mit unterschiedlicher Integrationstiefe" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die Dynamik der Wasserspeicherung im Untergrund hat Einfluss auf Abflussbildung, Grundwasserneubildung, Wasserverfügbarkeit sowie Wasser- und Energieflüsse zwischen Boden und Atmosphäre. Im Gegensatz zu punktskaligen Messungen des Wassergehalts in der ungesättigten Zone mit Feuchtesensoren bietet Cosmic Ray Neutron Sensing (CRNS) den Vorteil einer integrativen Messung auf der Feldskala. CRNS-Messungen sind jedoch auf wenige Dezimeter im Oberboden beschränkt, sodass die oben genannten Prozesse nicht ausreichend erfasst werden können. Daher ist es wichtig, die Entwicklung von Verfahren zur Skalierung der CRNS Beobachtungen in größere Tiefen voranzutreiben. Das Ziel des Moduls Hydrogeodäsie in der Forschergruppe Cosmic Sense ist die Extrapolation der CRNS Bodenfeuchte in die Wurzelzone mit Hilfe verschiedener Verfahren der Tiefenskalierung. Wir kombinieren hierzu CRNS mit zwei anderen nichtinvasiven Beobachtungsverfahren, die über einen ähnlichen horizontalen Messbereich (etwa 100 m) aber andere Integrationstiefen verfügen: GNSS Reflektometrie mit einer Integrationstiefe von wenigen Zentimetern und terrestrische Gravimetrie, die über die gesamte vadose Zone integriert. Die Untersuchungsgebiete werden dazu mit allen drei Techniken (CNRS, GNSS-R und Gravimetrie) instrumentiert. Über die Kombination dieser Beobachtungen erstellen wir einen einzigartigen Datensatz: tiefenaufgelöste Bodenfeuchte auf der Feldskala. Der zeitvariable funktionelle Zusammenhang zwischen den Beobachtungen in unterschiedlichen Tiefen wird analysiert und geeignete Ansätze zur Tiefenskalierung der Bodenfeuchte werden getestet und entwickelt. Wir erwarten somit auch einen wichtigen Beitrag für die Extrapolation fernerkundlicher Daten der Bodenfeuchte in größere Tiefen leisten zu können. Mit unserem umfassenden Beobachtungsansatz zielen wir auf ein besseres Verständnis von Wasserflüssen zwischen Grundwasser, Boden und Atmosphäre ab. Des Weiteren trägt das Projekt zu einer Weiterentwicklung verschiedener neuartiger nichtinvasiver Bodenfeuchte-Messverfahren bei. Das Modul Hydrogeodäsie trägt zu den drei übergeordneten Zielen der Forschergruppe wie folgt bei: (1) Herausforderungen der CRNS Messtechnik, hier die variable Integrationstiefe, werden über komplementäre, tiefenaufgelöste Beobachtungsdaten in Zusammenarbeit mit dem Modul Neutronensimulation weiterentwickelt, (2) repräsentative Bodenfeuchtedaten für die Wurzelzone werden über die neu erstellten Verfahren zur Tiefenskalierung und mit hydrologischen Modellen in Kooperation mit den Modulen Grundwasserneubildung und Hydrologische Modellierung ermittelt, (3) Dynamiken einzelner Wasserspeicher werden mit über CRNS hinausgehenden Beobachtungsdaten erfasst: einerseits die oberflächliche Bodenfeuchte und Schneehöhe mit GNSS-R in Kooperation mit den Modulen Fernerkundung und Grundwasserneubildung und andererseits die Variationen der Gesamtwasserspeicherung mit Gravimetrie.
Das Projekt "Neutronensimulation; Quantitative Untersuchung der Auswirkung verschiedener Wasserspeicher auf das CRNS-Signal" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Physikalisches Institut durchgeführt. Die Interpretation der Messergebnisse eines Cosmic Ray Neutron Sensing (CRNS)-Detektors benötigt ein tiefgreifendes Verständnis der zugrunde liegenden physikalischen Prozesse. In diesem Zusammenhang haben sich Monte-Carlo-basierte Vielteilchensimulationen, z.B. MCNPX, als sehr hilfreich erwiesen. Die allgemein akzeptierten Transferfunktionen um aus einer Neutronendichte die Bodenfeuchte zu berechnen, wurden semi-empirisch für idealisierte Bedingungen ermittelt. Die Effekte von Bodenbeschaffenheit, Vegetation und Schneebeschaffenheit werden teilweise durch Hinzufügen phänomenologisch motivierter Parameter berücksichtigt. Allerdings gibt es dazu bisher keine tiefergreifenden theoretischen Untersuchungen und Validierungen. Wir haben daher das Monte-Carlo Werkzeug namens URANOS entwickelt, welches speziell auf die Anforderungen der Umweltphysik und CRNS zugeschnitten wurde. Der benötigte Rechenaufwand konnte durch effektive, problemspezifische Methoden im Vergleich zu herkömmlichen Vielteilchensimulationen stark reduziert werden. In den letzten Jahren konnten wir damit das Verständnis der Signal-Reichweite-Beziehung deutlich verbessern und eine analytische Beschreibung unter Berücksichtigung von Umweltfaktoren herleiten. Das Hauptziel dieses Teilprojektes ist es, die Änderung des CRNS-Signals, hervorgerufen durch verschiedene Umweltfaktoren und Bodenstrukturen innerhalb des Einflussbereichs, zu verstehen. Dabei handelt es sich um folgende Faktoren: Bodenbeschaffenheit, vertikale Wasserverteilung in Boden und Luft, Landnutzung, Schneebedeckung, Bewuchs, und durch solches abgefangenes Wasser bei Regenfällen sowie generelle räumliche Inhomogenität. Um dies zu erreichen werden wir versuchen, Korrekturfunktion basierend auf physikalischen Modellen zu verwenden, um die wachsende Anzahl von empirischen und standortspezifischen Näherungen überflüssig zu machen. Zusätzlich werden die Neutronensimulationen benötigt, um den Einfluss verschiedener Detektoranordnungen zu untersuchen. Unverzichtbar sind die Neutronensimulationen für die Verbesserung bezüglich energieabhängiger Gewichtung und Weiterentwicklung der Neutronendetektoren sowie energiebereichsspezifischer Abschirmung. Des Weiteren werden sie für konzeptionelle Untersuchungen des Einflusses der Vegetation und weiterer Wasserspeicher benötigt. Für die Großversuchskampagne werden wir 3D-Modelle der Sensor-Standorte erstellen und die simulierten Messsignale den Arbeitsbereichen Großflächiges CRNS-Netzwerk und Mobiles CRNS zu Verfügung stellen. Schließlich können zusammen mit den Arbeitsbereichen Hydrologische Modellierung und Grundwasserneubildung räumlich-zeitliche Modellrechnungen durchgeführt werden um komplexe Zusammenhänge im Wasserhaushalt der Umwelt zu verstehen. Für die Weiterentwicklung des URANOS-Programms für den Einsatz im CRNS-Bereich benötigen wir die Vorschläge und Rückmeldungen der Nutzer.
Das Projekt "Cosmic Ray Neutron Sensing: Integrierte hydrologische Modellierung und Analyse von Wechselwirkungen zwischen Bodenfeuchte und atmosphärischer Grenzschicht" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Die Aufteilung der Nettostrahlung in latenten und fühlbaren Wärmestrom sowie die Infiltrationskapazität hängen stark vom Sättigungszustand des Bodens ab. Die raumzeitliche Verteilung des Bodenwassergehalts ist daher eine Schlüsselvariable für den gekoppelten Austausch von Wasser und Energie zwischen Landoberfläche und Atmosphäre. Die Bedeutung des Bodenwassergehalts erstreckt sich dabei von der lokalen über die regionale bis hin zur kontinentalen Skala. Die Initialisierung und Evaluierung von hydrologischen und atmosphärischen Modellen im Hinblick auf Bodenfeuchte und Schneespeicher ist besonders schwierig, weil die Beobachtungsskala und die räumliche Auflösung in den Modellsystemen üblicherweise nicht übereinstimmen. Wir untersuchen das Potenzial und die Grenzen von feldskaligen, Neutronen basierten Beobachtungen (Cosmic-Ray Neutron Sensing, CRNS) und in situ Sensornetzwerken für die Assimilation in gekoppelten hydrologisch - atmosphärischen Modellen, sowohl für die Bodenfeuchte als auch für das Schneewasseräquivalent. Durch die CRNS Methode erwarten wir erhebliche Verbesserungen für die hydrologische Modellierung, die Landoberflächenmodellierung und damit auch für voll gekoppelte regionale hydrologisch-atmosphärische Simulationen. Die zentralen Ziele des vorgeschlagenen Forschungsvorhabens sind: 1) eine einheitliche Integration von feldskaligen Bodenfeuchte- und Schneewasserdaten in Hydrologie- und Landoberflächenmodelle durch Datenassimilation zu realisieren, 2) den Mehrwert dieser Daten für die hydrologische- und Landoberflächenmodellierung zu bewerten und zu quantifizieren, und 3) die Untersuchung des Einflusses der Assimilation der Bodenfeuchtedaten auf die lokalen Wechselwirkungen zwischen Landoberfläche und Atmosphäre. Wir führen zudem eine integrative Analyse zur Eignung weiterer physikalisch basierter hydrologischer Modelle zur Wiedergabe von Boden- und Schneewasserdynamik auf der Feld- und Regionalskala durch. Darüber hinaus werden wir den Ensemble Kalman Filter (EnKF) Datenassimilationsansatz mit dem Stand-alone-WRF-Hydro (Noah-MP) Modell anwenden und untersuchen, wie simulierte Zustände und Flüsse verbessert werden. Mittels inverser Modellierung ermitteln wir, wie gut die Datenassimilation zur Optimierung statischer Bodenparameter genutzt werden kann. Abschließend analysieren wir den Austausch von Feuchte an der Grenzfläche zwischen Land und Atmosphäre unter Verwendung des voll gekoppelten hydrologisch-atmosphärischen Modellierungssystems WRF-Hydro.
Das Projekt "Detektorentwicklung; Bestimmung der integralen Bodenfeuchte mit Hilfe der CRNS-Methode mit bisher unerreichter Zeitauflösung" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Physikalisches Institut durchgeführt. Höhere Genauigkeiten lassen sich bei der CRNS-Methode nur mit großvolumigen Neutronendetektoren erreichen. In Anbetracht der räumlichen Heterogenität von Wasserspeichern innerhalb des Messbereiches und den Anforderungen der mobilen Anwendung, bei welcher Messzeit der beschränkende Faktor ist, können nur deutlich leistungsfähigere Instrumente die Herausforderungen bewältigen. Bedingt durch den vergleichsweise geringen Fluss kosmogener Neutronen und die stochastische Natur der Detektion selbst, sind große, effektive Nachweisflächen für CRNS-Systeme notwendig um die Genauigkeit zu steigern. Bisher werden kommerziell vergleichsweise kleinvolumige Proportionalzählrohre angeboten, gefüllt entweder mit dem nur noch sehr begrenzt verfügbaren Helium-3 oder dem weniger effektiven und sehr giftigen Bortrifluorid als gasförmigem Neutronenkonverter. Im Gegensatz dazu lassen sich mit aneinander gereihten, borbeschichteten Proportionalzählern mit einem Standardzählgas unter Normaldruck relativ einfach und kostengünstig großflächige Neutronendetektoren bauen. Die Machbarkeit dieses Ansatzes wurde bereits an Prototypen erfolgreich getestet. Ziel: Entwicklung eines modularen, großvolumigen Neutronendetektorsystems für die CRNS-Methode. Dabei kommen Bor-10-beschichtete Elemente in den einzelnen Modulen als Neutronenkonverter zum Einsatz. Mit diesen Modulen wollen wir einen großflächigen Detektor bauen, der die kommerziell erhältlichen Detektoren um bis zu einem Faktor von 100 in der nachgewiesenen Neutronenzählrate übertrifft. Zusätzlich wollen wir das Signal-zu-Untergrund-Verhältnis verbessern, indem wir durch eine geeignete Kombination von thermischem Neutronenabsorber und Moderator den Einfluss der lediglich lokal relevanten thermischen Neutronen minimieren. Zusammengefasst haben wir zwei Entwicklungsziele: Reduktion der Kosten pro Nachweisfläche um die gemessene Zählrate für ein gegebenes Detektorbudget zu maximieren und Reduktion des Gewichts pro Nachweisfläche um zukünftige luftgestützte Plattformen für CNRS-Systeme zu realisieren. Beitrag zur und Zusammenarbeit innerhalb der Forschergruppe: Die Optimierung von Neutronendetektoren basiert auf den Ergebnissen des Moduls Neutronensimulation. Neben den neutronenspezifischen Anforderungen müssen in enger Zusammenarbeit mit den Nutzern aus den übrigen Forschungsbereichen die notwendigen Spezifikationen, wie z.B. Wetterfestigkeit, festgelegt werden um ein anwendungstaugliches Messgerät zu entwickeln. Der fertige Detektor wird schließlich bei den gemeinsamen Messkampagnen zum Einsatz kommen. Hauptsächlich werden mobile Messungen von der Detektorentwicklung profitieren. Spezielle Modifikationen in der Abschirmung wird es in Zusammenarbeit mit den Teilprojekten Vegetation und Großflächiges CRNS-Netzwerk ermöglichen, gezielter den ortsabhängigen Einfluss der Biomasse auf das Messsignal zu untersuchen.
Origin | Count |
---|---|
Bund | 97 |
Type | Count |
---|---|
Förderprogramm | 97 |
License | Count |
---|---|
offen | 97 |
Language | Count |
---|---|
Deutsch | 84 |
Englisch | 24 |
Resource type | Count |
---|---|
Keine | 52 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 44 |
Lebewesen & Lebensräume | 45 |
Luft | 44 |
Mensch & Umwelt | 97 |
Wasser | 39 |
Weitere | 97 |