API src

Found 188 results.

Related terms

MOSAiC 2: Modellierung des Einflusses von Eisrinnen auf die atmosphärische Grenzschicht, Vorhaben: Turbulenzauflösende Simulationen

Das Projekt "MOSAiC 2: Modellierung des Einflusses von Eisrinnen auf die atmosphärische Grenzschicht, Vorhaben: Turbulenzauflösende Simulationen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Meteorologie und Klimatologie.

MOSAiC 3: Saisonale Dynamik und Vertikalverteilung der Zooplanktongemeinschaft im arktischen Ozean, Vorhaben: Automatisierte Bildanalyseverfahren

Das Projekt "MOSAiC 3: Saisonale Dynamik und Vertikalverteilung der Zooplanktongemeinschaft im arktischen Ozean, Vorhaben: Automatisierte Bildanalyseverfahren" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität zu Kiel, Institut für Informatik.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Verständnis von Wolken und Niederschlag auf der Meter-Skala mit HALO und ICON – Luftmassentransformation in der Arktik

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Verständnis von Wolken und Niederschlag auf der Meter-Skala mit HALO und ICON – Luftmassentransformation in der Arktik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Entwicklung arktischer Luftmassen ist wichtig für die Entstehung und Beständigkeit von Wolken und Niederschlag. Zwei Phänomene – warme und feuchte Einflüsse aus dem Süden sowie kalte und trockene Strömungen aus dem Norden – verursachen besonders starke und schnelle Änderungen in den Luftmassen. Während dieser Ereignisse ändern sich die Zustände z.B. der Wolken, der Stabilität und des Feuchtebudgets sowohl räumlich als auch zeitlich. Aufgrund dieser schnellen Änderungen sowie den generellen arktischen Bedingungen mit niedrigen und oft starken Inversionen, ist es schwierig die Prozesse mit globalen Modellen mit einer groben Auflösung sinnvoll wiederzugeben. Um die entscheidenden Prozesse sowohl besser zu erfassen als auch zu parameterisieren, wird in diesem Projekt eine Kombination aus detaillierten Beobachtungen mit dem HALO Flugzeug und hoch-aufgelösten Simulationen mit dem ICON-LEM verwendet. Durch die lange Reichweite des HALO Flugzeuges wird es möglich sein dasselbe Ereignis mehrmals zu messen und dadurch einen breiten Einblick in die Struktur der Luftmasse zu bekommen. Darüber hinaus wird es durch die Lagrangsche, d.h. mit der Strömung mitbewegte, Flugstrategie möglich sein, die zeitliche Entwicklung der Luftmassen während der Ereignisse zu erfassen. Durch lokale Verfeinerungen um den tatsächlichen Flug herum wird die Auflösung des ICON-LEM Setups zwischen 1 km und 100 m variieren. Mit dieser einzigartige Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird es möglich sein, das Feuchtebudget während der beobachteten warmen und kalten Einströmungen abzuschätzen. Anhang dieser Abschätzung können anschließend offene Fragen wie die Effizienz des Niederschlages sowie deren Einfluss auf die Beständigkeit der arktischen Mischphasenwolken untersucht werden. Während die Lagrangsche Flugstrategie es ermöglicht neue und einzigartige Forschungsfragen zu untersuchen, stellt sie die Flugplanung vor eine große Herausforderung, da eine gute Abschätzung der Luftströmungen unerlässlich sein wird. Teil dieses Projekts ist es deshalb auch die Flugplanung durch hochaufgelöste Vorhersagen und die Verfolgung bestimmter Luftmassen zu unterstützen. Insbesondere die Berechnung mehrerer Trajektorien wird es ermöglichen die verbleibenden Unsicherheiten abzuschätzen und sinnvolle Flugmuster vorzuschlagen. Die vorgeschlagene Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird zu einem besseren Verständnis der Änderungen im Feuchtebudget und der Erhaltung von Mischphasenwolken während der feuchten sowie kalten Luftströmungen in der Arktis führen.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

Das Projekt "Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Vergangene und zukünftige Entwicklung der Eismassen auf Svalbard - Klimaantrieb und Telekonnektionen

Das Projekt "Vergangene und zukünftige Entwicklung der Eismassen auf Svalbard - Klimaantrieb und Telekonnektionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Geographisches Institut.Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.

Herkunft von Schelfwasser und Pazifischem Wasser in der arktischen Salzgehaltsschichtung abgeleitet von stabilen Sauerstoffisotopen

Das Projekt "Herkunft von Schelfwasser und Pazifischem Wasser in der arktischen Salzgehaltsschichtung abgeleitet von stabilen Sauerstoffisotopen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Ziel des Projektes ist eine Bestandsaufnahme der Wassermassenverteilung und der Zirkulation im Arktischen Ozean. Stabile Sauerstoffisotopen (delta18O) des Wassers ist ein konservativer Tracer und werden zusammen mit hydrochemischen Daten dazu verwendet das vom Schelf stammende Süßwasser (Flusswasser und Meereis-Schmelze oder Bildung) und die aus dem Pazifik stammende Komponente zu untersuchen. Auf diese Weise wird der Einfluss dieser Wassermassen in der arktischen Salzgehaltsschichtung (Halokline), dem Atlantischen Zwischenwasser und dem Tiefen- und Bodenwasser des Arktischen Ozeans quantifiziert werden. Es ist bekannt, dass die Verteilung der Pazifischen Komponente starken Veränderungen auf dekadischen Zeitskalen unterliegt aber auch in den Süßwasserverteilungen im Transpolaren Drift Strom wurden 2007 starke Variationen beobachtet welche somit auf zusätzliche jährliche Variationen hinweisen. Es ist nicht bekannt ob die 2007 beobachteten Variationen ein permanentes Phänomen sind und ob diese mit dem weitgehenden Fehlen des Pazifischen Wassers in diesem Zeitraum zusammenhängen. Die geplante flächendeckende und quantitative Erfassung der Süßwasserverteilung und des Pazifischen Wassers werden daher dazu beitragen, den Einfluss und die möglichen Rückkopplungsmechanismen der arktischen Hydrographie auf den arktischen und globalen Klimawandel weitergehend zu verstehen.

Charakterisierung von Mineralstaub-Deposition mit hoher Zeitauflösung im Hinblick auf Partikelgröße, Zusammensetzung und atmosphärische Alterung an für ein atmosphärisch-ozeanisches Staubbudget relevanten Standorten

Das Projekt "Charakterisierung von Mineralstaub-Deposition mit hoher Zeitauflösung im Hinblick auf Partikelgröße, Zusammensetzung und atmosphärische Alterung an für ein atmosphärisch-ozeanisches Staubbudget relevanten Standorten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Umweltmineralogie.Nass- und Trockendeposition sind die wesentlichen Prozesse, die Mineralstaub aus der Atmosphäre entfernen. Teragramm Mineralstaub werden pro Jahr interkontinental verfrachtet. Erreicht Staub weitab von seiner Quelle wieder die Erdoberfläche, kann er erheblichen Einfluss auf Ökosysteme haben. Insbesondere ozeanische Ökosysteme sind in ihrer Bioproduktivität nährstofflimitiert. Diese Nährstoffe können durch Mineralstaub eingetragen werden. Trotz der Bedeutung der Deposition sind Messungen bislang rar, und Staubmodelle, die sich an den wenigen Messungen validieren, zeigen erhebliche Fehler. Hauptsächlich der Mangel an geeigneten Messdaten behindert im Moment das weitergehende Verständnis des Staubzyklus. Fehlende standardisierte Messtechnik zur Trockendepositionsmessung erschwert bislang gute Datenerfassung. Daher wird ein neuer automatisierter Nass- und Trockendepositionssammler entwickelt und charakterisiert. Der Sammler wird mit meteorologisch relevanter Zeitauflösung (Stunden bis Tage) betrieben und damit einen großen Nachteil vergangener Messungen beheben, nämlich eine Zeitauflösung von meist Wochen bis Monaten. Durch den Einsatz automatisierter rasterelektronenmikroskopischer Einzelpartikel-Analyse wird ein bisher unerreichter Daten-Detailreichtum für Partikelgrößen von 700 nm bis 100 mym zur Verfügung stehen, einschließlich Partikelgrößenverteilung, Elementzusammensetzung und Partikel-Mischungszustand. Besondere Aufmerksamkeit wird potentiellen Nährstoffen wie Fe, P, K, Mg und Ca gewidmet. Für ausgewählte Proben wird weiterhin Partikel-Hygroskopizität bestimmt.Nach der Testphase auf der Insel Frioul, Frankreich, während der der Sammler im Vergleich zur dort existierenden Zeitreihe validiert wird, werden drei Instrumente an Stationen in Betrieb genommen, die für Staubeintrag in die relevant Ozeane sind: Sao Vicente, Kap Verde und Barbados im Saharischen Ausfluss so wie Heimaey, Island, im arktischen Staub. In einer zweiten Phase (nach dem vorliegenden Projekt) soll das Netzwerk dann erweitert werden durch New Island, Falkland im südamerikanischen Ausfluss, Amakusa, Japan im asiatischen Ausfluss und die Insel Amsterdam zwischen dem südafrikanischen und dem australischen Ausfluss. Zum ersten Mal werden aus diesem Projekt kontinuierliche Zeitreihen der Nass- und Trockendeposition von Mineralstaub zur Verfügung stehen, die tägliche bzw. Ereignis-basierte Zeitauflösung und zudem Partikel-Größenauflösung bieten. Hieraus werden atmosphärische Schlüsselfaktoren abgeleitet, die zur Deposition führen. Weiterhin wird eine Partitionierung zwischen Nass- und Trockendeposition und ihr Größenverteilung von Nährstoffen - insbesondere P und Fe - untersucht. Partikel-Mischungszustand und Form werden durch ein Mischungsmodell und Bildanalyse bestimmt. Eine öffentliche Datenbank wird bereitgestellt, die z. B. für Modellvalidierung zu Verfügung steht. Es ist geplant, die Stationen nach Ende der DFG-Finanzierungphase weiter zu betreiben.

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt E04: Schneefall und Schneebedeckung und deren verbundene Rückkopplungsmechanismen

Das Projekt "Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt E04: Schneefall und Schneebedeckung und deren verbundene Rückkopplungsmechanismen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Köln, Institut für Geophysik und Meteorologie, Bereich Meteorologie, Arbeitsgruppe Integrierte Fernerkundung.Um die Fähigkeit von Modellen die physikalischen Prozesse zu reproduzieren, die maßgeblich an der Niederschlagsvariabilität in der Arktis beteiligt sind, abschätzen zu können, werden wir aktive und passive Millimeterwellen-Satellitendatensätze auf zwei verschiedene Weisen nutzen. Der klassische Beobachtungs-Modell Ansatz wird ergänzt durch einen Modell-zu-Beobachtung Ansatz, welcher die synthetischen Messgrößen, wie Radarreflektivität und Helligkeitstemperaturen, aus RCM Simulationen erstellt. Dabei werden Beobachtungen, neue arktische Reanalysen mit unterschiedlicher räumlicher Auflösung und eine Reihe von regionalen Klimamodell-Simulationen (RCM) inklusive einem arktischen gekoppelten Atmosphäre Eis-Ozean RCM verwendet um die Verknüpfungen zwischen Meereisrückgang und Wolkenveränderungen, dem Einfluss von Schneefall, das Verhältnis von Schneefall zu Niederschlag und der Wiedergabe von beobachteter Schneebedeckungsvariabilität mit den damit verbundenen dynamischen Verbindungen mit der atmosphärischen Zirkulation zu untersuchen.

Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?

Das Projekt "Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.

Zeitlich hochauflösende Klimarekonstruktion für das Spätquartär mittels Sedimentologie und Isotopengeochemie - vergleichende Untersuchungen in der Arktis und Antarktis

Das Projekt "Zeitlich hochauflösende Klimarekonstruktion für das Spätquartär mittels Sedimentologie und Isotopengeochemie - vergleichende Untersuchungen in der Arktis und Antarktis" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Fakultät für Geowissenschaften.Ziel dieses Projektes ist eine vergleichende, zeitlich hochauflösende Rekonstruktion der Klimaentwicklung im Spätquartär im Bereich der Framstraße (Arktis) und des Riiser-Larsen Meeres (Antarktis). Mit Hilfe von Korngrößenanalysen und Sm-Nd-Isotopendaten, sollen klimagesteuerte Veränderungen in der Geschwindigkeit von Bodenströmungen, sowie der Provenienzen, Transportwege und -mechanismen der Sedimente ermittelt werden. Von großer Bedeutung ist die Unterscheidung zwischen strömungs- und eistransportiertem Sediment. Darauf aufbauend untersuchen wir die Kopplung zwischen thermohalinen Prozessen im Nordatlantik/Europäischen Nordmeer und dem Arktischem Ozean. Im RiiserLarsen Meer soll untersucht werden, ob ein Rinnensystem auf dem Kontinentalhang dem klimagesteuerten Abfluss von auf dem Schelf gebildetem Bodenwasser dient. In diesem Zusammenhang wird auch eine mögliche Verschiebung des Weddellwirbels infolge klimatischer Einflüsse untersucht. Im Vordergrund der Arbeiten stehen die Untersuchung von kontemporären Klimaphasen in der Nord- und Südhemisphäre und die Reaktion des Atmoshäre-Eis-Meer Systems im bipolaren Vergleich.

1 2 3 4 517 18 19