Das Projekt "Ökosystemantworten auf kontinuierliche Offshore Schallspektren, Vorhaben: Die Auswirkungen anthropogener Unterwassergeräusche auf Verhalten und physiologische Reaktionen von Zooplankton" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: tian-Albrechts-Universität zu Universität zu Kiel, Forschungs- und Technologie-Zentrum Westküste.
InSpEE (INSPIRE) provides information about the areal distribution of salt structures (salt domes and salt pillows) in Northern Germany. Contours of the salt structures can be displayed at horizontal cross-sections at four different depths up to a maximum depth of 2000 m below NN. The geodata have resulted from a BMWi-funded research project “InSpEE” running from the year 2012 to 2015. The acronym stands for "Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air)”. Additionally four horizontal cross-section maps display the stratigraphical situation at a given depth. In concurrence of maps at different depths areal bedding conditions can be determined, e.g. to generally assess and interpret the spread of different stratigraphic units. Clearly visible are extent and shape of the salt structures within their regional context at the different depths, with extent and boundary of the salt structures having been the main focus of the project. Four horizontal cross-section maps covering the whole onshore area of Northern Germany have been developed at a scale of 1:500.000. The maps cover the depths of -500, -1000, -1500, -2000 m below NN. The four depths are based on typical depth requirements of existing salt caverns in Northern Germany, mainly related to hydrocarbon storage. The shapes of the structures show rudimentary information of their geometry and their change with depths. In addition they form the starting point for rock mechanical calculations necessary for the planning and construction of salt caverns for storage as well as for assessing storage potentials. The maps can be used as a pre-selection tool for subsurface uses. It can also be used to assess coverage and extension of salt structures. Offshore areas were not treated within the project. All horizontal cross-section maps were adjusted with the respective state geological survey organisations. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE (INSPIRE) is stored in 15 INSPIRE-compliant GML files: InSpEE_GeologicUnit_Salt_structure_types.gml contains the salt structure types (salt domes and salt pillows), InSpEE_GeologicUnit_Salt_pillow_remnants.gml comprises the salt pillow remnants, InSpEE_GeologicUnit_Structure_building_salinar.gml represents the structural salinar(s), the four files InSpEE_Structural_outlines_500.gml, InSpEE_Structural_outlines_1000.gml, InSpEE_Structural_outlines_1500.gml and InSpEE_Structural_outlines_2000.gml represent the structural outlines in the corresponding horizontal cross-sections, the four files InSpEE_GeologicUnit_Cross_Section_500, InSpEE_GeologicUnit_Cross_Section_1000, InSpEE_GeologicUnit_Cross_Section_1500 and InSpEE_GeologicUnit_Cross_Section_2000 display the stratigraphical situation in the corresponding horizontal cross-sections and the four files InSpEE_GeologicStructure_500.gml, InSpEE_GeologicStructure_1000.gml, InSpEE_GeologicStructure_1500.gml and InSpEE_GeologicStructure_2000.gml comprise the relevant fault traces in the corresponding horizontal cross-sections. The GML files together with a Readme.txt file are provided in ZIP format (InSpEE-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area B; ~560 km2) is located in the north-western part of the German North Sea sector, the so-called “Entenschnabel”, an approximately 150 kilometer long and 30 kilometer wide area between the offshore sectors of the Netherlands, Denmark and Great Britain (pilot region B). The model in the Ducks Beak is based on several high-resolution 3D seismic data and geophysical/geological information from four exploration wells. It includes 20 generalized faults and the following 16 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Tertiary, 4) Base Upper Cretaceous, 5) Base Lower Cretaceous, 6) Base Upper Jurassic, 7) Base Lower Jurassic, 8) Base Muschelkalk, 9) Base Röt, 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Wechselfolge, 13) Base Volpriehausen Formation, 14) Base Triassic, 15) Base Zechstein, 16) Top Basement. The reservoir formed by sandstones of the Middle Buntsandstein is located within the Mads Graben, which is bounded to the west by the extensive Mads Fault (normal fault). Marine mudstones of the Upper Jurassic and Lower Cretaceous serve as the main seal formations. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. The model parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
Das Projekt "Offshore Power Electronics" wird/wurde ausgeführt durch: Technische Universität Chemnitz, Fakultät für Elektrotechnik und Informationstechnik, Professur für Leistungselektronik.Our task is the analysis of fault mechanisms and design measures to increase reliability and ruggedness of high power converters for future large offshore wind parks.
Das Projekt "Geflügelte Geister der Ozeane: die globale räumliche Ökologie und Schutz der kleinsten und schwer erfassbaren Seevögel der Welt, der Sturmschwalben (Hydrobatidae & Oceanitidae), im Mittelmeer und im Nordostatlantik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Bei den globalen Veränderungen und deren Mitigation durch Umstellung auf erneuerbare Energiequellen (z. B. Offshore-Wind- und Solarparks) müssen nachteilige Auswirkungen auf die Lebensräume im Meer besser erkannt und vermieden werden. So hat die internationale Fischereipolitik in letzter Zeit der marinen Aquakultur Vorrang eingeräumt, um die globale Nahrungsmittel- und Ernährungssicherheit vieler Staaten zu gewährleisten, ohne deren tatsächliche Auswirkungen auf die Meeresumwelt zu kennen. Das Verständnis der räumlichen Ökologie freilebender Tiere, einschließlich ihrer Verbreitung, Bewegungen und Wanderungen, ihrer Phänologie und ihrer Ernährung, führt zu einer besseren Bewirtschaftung und Erhaltung. So können beispielsweise Bemühungen zur Erhaltung wandernder Populationen, die sich ausschließlich auf Brutgebiete konzentrieren, diese Populationen nicht vor Bedrohungen entlang der Wanderrouten oder in Nicht-Brutgebieten schützen. Tierbewegungen und Wanderungen sind auch deshalb wichtig, weil sie das Verhalten, die Lebensweise und sogar die Anatomie vieler Arten beeinflussen. Darüber hinaus kann sich das Wander- und Ernährungsverhalten innerhalb und zwischen den Arten und Populationen unterscheiden. Daher ist es von entscheidender Bedeutung, die auf jeder dieser Ebenen genutzten Routen und Nichtbrutgebiete zu ermitteln, zumal sie auch mit unterschiedlichen Bedrohungen verbunden sein können. Darüber hinaus kann die Untersuchung verschiedener Populationen auch dazu beitragen, zu verstehen, ob die räumliche Ökologie der Art durch genetischen und/oder Umweltvariablen bestimmt wird. Eine Möglichkeit, die Bewegungen und die Verteilung außerhalb der Fortpflanzungszeit bei wandernden Arten zu bestimmen, und zwar neuerdings auch bei den kleinsten Arten, ist der Einsatz von Geolokatoren auf Lichtniveau. Darüber hinaus können feinräumige Bewegungen mit dem kleinsten GPS-Gerät von nur 0,95 g verfolgt werden. Sturmschwalben (Familien Hydrobatidae und Oceanitidae) sind die kleinsten Seevögel und für die Forscher normalerweise nur zugänglich, wenn sie während der Brutzeit in den Kolonien an Land sind. Daher ist es besonders schwierig, sie außerhalb dieses Zeitraums zu untersuchen, wenn sie sich irgendwo auf dem Meer aufhalten und während dieser Zeit wandern und normalerweise ihr Gefieder mausern. Von den meisten Arten ist bekannt, dass sie sich während der Brutzeit bevorzugt von Ichthyoplankton und Zooplankton ernähren, und oft wird diese Beute zusammen mit einem relevanten Anteil an Mikroplastik verzehrt. Obwohl die Interaktion von Sturmschwalben mit anthropogenen Offshore-Aktivitäten teilweise untersucht wurde, zielt der vorliegende Vorschlag darauf ab, wichtige Erkenntnisse über die globale räumliche Ökologie dieser wenig erforschten Taxa zu sammeln und dazu beizutragen, Wissenslücken in Bezug auf die biologische Vielfalt der Meere und die anthropogenen Einflüsse auf sie entlang der europäischen Meere zu bewerten.
In der deutschen ausschließlichen Wirtschaftszone beziehungsweise auf dem Festlandsockel wird eine Vielzahl von Offshore-Vorhaben geplant und realisiert. Dazu gehören Windpark-Projekte, die Anbindung der Windparks an das Stromnetz mittels so genannter Netzanbindungssysteme, der Bau und die Verlegung von sonstigen Seekabeln sowie von Rohrleitungen, das Ausbringen von Messstellen und schließlich die Vornahme von Forschungshandlungen. Sowohl für die Konstruktion als auch die Luftverkehrsinfrastruktur bestehen Vorgaben und Anforderungen, die in den einzelnen Offshore-Vorhaben zu berücksichtigen sind.
Das Projekt "Neue robotische Handhabungstechniken und KI-Algorithmen zur präzisen Handhabung von Objekten im Meer am Beispiel von Munitionsaltlasten" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Deutsches Forschungszentrum für Künstliche Intelligenz GmbH.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Globale Relevanz von Gashydrat-gefüllten Rissen für Hangstabilität" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 4 Dynamik des Ozeanbodens: Marine Geodynamik.Submarine Hangrutschungen stellen ein bedeutendes Risiko für Offshore-Infrastrukturen und Küstengebiete dar, da sie zum Beispiel gefährliche Tsunamis auslösen können, wie der Storegga Slide vor der Küste Norwegens. Neben anderen Präkonditionierung für Hangrutschungen, wie steile Hangneigung oder Überdruck in den Porenräumen der Sedimente verursach im Zusammenhang mit Eiszeiten, wurde die Auflösung von Gashydraten in vielen Studien diskutiert. Die weltweite räumliche Überscheidungen von submarinen Hangrutschungen und Gashydratvorkommen hat zu der Hypothese geführt, dass die Auflösung von Gashydraten in Zeiten von Meeresspiegelsenkung oder Erderwärmung eine Hangrutschung auslösen kann. Dieser Prozess entfernt die zementierenden Gasyhdrate aus den Porenräumen und das frei werdende Gas verursacht zusätzlichen Überdruck . Obwohl Studien mithilfe von numerischen Modellierungen gezeigt haben, dass diese Hypothese realistisch ist, konnte die Forschung keine geologischen oder geophysikalischen Beweise dafür finden, dass dieser Prozess wirklich eine Hangrutschung ausgelöst hat. Außerdem zeigen verschiedene Studien, dass viele submarine Hangrutschungen retrogressiv sind und auf dem mittleren bis unteren Kontinentalhang ausgelöst werden. Diese Beobachtung lässt vermuten, dass andere Prozesse die Rutschungen auslösen. Davon abgesehen gibt es keinen Zweifel, dass Gashydrate die geotechnischen Eigenschaften von Sedimenten stark beeinflussen. Daher ist es wichtig ihren Einfluss auf die Hangstabilität weiter zu untersuchen und neue Hypothesen zu testen. Das übergeordnete wissenschaftliche Ziel dieses Antrags ist es, (1) die globale Relevanz von Gashydratgefüllten Rissen für Hangstabilität zu ergründen und (2) den Einfluss von Scherfestigkeitsvariationen auf Störungsverläufe und Stressmerkmale, wie z.B. Bohrlochausbrüche, zu verstehen. Bis jetzt war es nicht möglich gewesen, den Zusammenhang zwischen Gashydraten und Hangstabilität herzustellen, da ein umfangreicher Datensatz aus geotechnischen, geologischen und geophysikalischen Daten aus einem Gebiet mit Gashydrate verursachten Rutschungen nicht verfügbar war. Die IODP Expedition 372 hat dies geändert. Uns stehen jetzt Logging-While-Drilling Daten und Sedimentkerne von dieser Expedition zur Verfügung, genauso wie ein hochauflösender 3D Seismik Datensatz, der mit dem GEOMAR P-Cable System im Jahre 2014 aufgezeichnet wurde. Diese Daten im Zusammenhang mit einer Scherzelle für Gashydrathaltige Sedimente auf dem neusten Stand der Technik am GEOMAR, die es erlaubt die Deformation der Probe live mit einem 4D X-ray CT zu beobachten, wird es uns ermöglichen, einen Entscheidenden Schritt vorwärts in der Gashydrat- und Hangstabilitätsforschung zu machen.
Das Projekt "Anwendungsorientierte Sensordatenfusion für die In-Situ Rotorblatt-Strukturüberwachung, Teilvorhaben: Entwicklung der Radarsensorik" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: IMST GmbH.Mit dem 2019 ins Leben gerufenen europäischen Green Deal und den damit verbundenen nationalen Programmen wurde ein Maßnahmenpaket beschlossen, welches einen Transformationsprozess der europäischen Wirtschaft mit dem Ziel eines nachhaltigen und integrativen Wachstums vorsieht. In diesem Zusammenhang kommt der Energiegewinnung aus Windkraft eine herausragende Bedeutung zu. In Deutschland schlägt sich dies im Koalitionsvertrag der Bundesregierung nieder, in dem ambitionierte Ziele für den Ausbau der Windenergie sowohl onshore als auch offshore verfolgt werden. Um dem hohen Kostendruck in der elektrischen Energieerzeugung zu begegnen, wurden in der Windenergie in den letzten Jahren bereits große Erfolge erzielt und die Energieentstehungskosten konnten signifikant gesenkt werden. Bei Fortschreiten dieses Wegs kommt den Rotorblättern eine Schlüsselrolle zu, da sie die Windenergie in mechanisch nutzbare Energie überführen, mit rund 20% direkt zu den Anlagenkosten beitragen und die mechanischen Anlagenlasten signifikant beeinflussen. Für die optimierte Betriebsführung der Windenergieanlagen (WEA) sind jedoch neuartige Ansätze des 'Structural Health Monitorings (SHM)' erforderlich. Insbesondere bei der anwendungsorientierten Entwicklung solcher Systeme gibt es hohen Entwicklungsbedarf! IMST beteiligt sich am Verbundprojekt mit seinem Know-how im Bereich der Radarelektronik. Gemeinsam mit dem Partner TUHH wird ein bestehender Sensorknoten mit 60 GHz Radartechnik erweitert. Dazu gab es bereits Voruntersuchungen der Partner TUHH und GUF auf deren Basis der Radarsensor entwickelt wird. Die neue Antenne soll einen breiteren Beam ermöglichen, um mehr Fläche des Rotorblatts abzudecken. Ziel ist es, mit 4 Sensorknoten ein Rotorblatt zu erfassen. IMST entwickelt neben der Radarelektronik eine passende Antenne und ein Gehäuse, in dem alle elektrischen Komponenten des Sensorknotens eingebaut werden. Für einen Feldversuch in 3 WEAs wird IMST 44 Sensorknoten mit Radar aufbauen.
Das Projekt "Controlled Cluster Wakes: Steuerung und Mitigation großskaliger Windparkeffekte, Teilvorhaben: Lidar-Messkampagne zur Erfassung von Nachläufen inner- und außerhalb eines Offshore Windparks und Abgleich mit Modellen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWE Offshore Wind GmbH.Das Gesamtziel des Vorhabens C²-Wakes ist es zu untersuchen, ob und wie sich beim geplanten Ausbau der Offshore-Windenergie großskalige Nachlaufeffekte reduzieren lassen und der Ertrag von Windparkclustern erhöhen werden kann. Diese geschieht zum einen durch die Durchführung einer umfangreichen Scanning-Lidar-Messkampagne zur Vermessung des Einflusses aktiver Nachlaufablenkung auf Windpark- und Cluster-Wakes. Zum anderen wird untersucht, welche Auswirkungen neuartige Windenergieanlagenkonzepte und optimierte Windparklayouts auf Cluster-Nachläufe haben und welche Regelungsansätze zur Reduktion der Windparkclustereffekte und damit zur Steigerung des Gesamtertrags von Windparkclustern beitragen können. Des Weiteren beschäftigt sich das Projekt auch mit der Fragestellung, welche Potenziale zur Erhöhung des Windparkertrags durch Beeinflussung des Global Blockage Effekts existieren. Aus den Ergebnissen werden im Anschluss Handlungsempfehlungen für Industrie und Behörden zur Reduktion von großskaligen Windparkeffekten gegeben. Mit diesen Zielen widmet sich das Projekt Fragestellungen mit erheblicher Relevanz für die effizientere und wirtschaftlichere Windenergienutzung auf See. Das Teilvorhaben fokussiert sich auf die Umsetzung einer Offshore Messkampagne in einem von RWE betriebenen Offshore Windpark in der Deutschen Nordsee und daran anknüpfende Untersuchung zu Aspekte der Planung und des Betriebs von Offshore Windparks. Bei den die Messkampagne begleiteten Forschungs- und Entwicklungsarbeiten steht für RWE im Vordergrund, vorhandene In-House Modelle zu verbessern, indem diese sowohl mit gewonnen Messdaten aus der Messkampagne als auch mit Modellierungsergebnissen der Projektpartner unter Nutzung von aufwendigeren Modellen abgeglichen und angepasst werden.
Origin | Count |
---|---|
Bund | 1451 |
Land | 661 |
Wissenschaft | 659 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 775 |
Text | 4 |
unbekannt | 669 |
License | Count |
---|---|
geschlossen | 29 |
offen | 1424 |
Language | Count |
---|---|
Deutsch | 1317 |
Englisch | 173 |
Resource type | Count |
---|---|
Archiv | 22 |
Datei | 634 |
Dokument | 7 |
Keine | 416 |
Webdienst | 10 |
Webseite | 1005 |
Topic | Count |
---|---|
Boden | 461 |
Lebewesen & Lebensräume | 530 |
Luft | 1453 |
Mensch & Umwelt | 1453 |
Wasser | 1153 |
Weitere | 1437 |