API src

Found 898 results.

Related terms

Modellierung von Strömungen über Bodenformen in Tidegebieten

Das Ziel dieses Projekts besteht in der Analyse der Strömungsmuster über subaquatischen Bodenformen in Tidegebieten mit Hilfe hochauflösender numerischer Modelle. In Flüssen, nahe der Küsten und in größeren Tiefen sind Bodenformen weit verbreitet und reflektieren Strömung und Sedimenttransportwege, während sie gleichzeitig einen starken Effekt auf die Strömung ausüben. Diese Effekte sind darüber hinaus von hoher sozio-ökonomischer Bedeutung, z.B. hinsichtlich der Schiffbarkeit von Flussmündungen und der Sicherheit von Offshore-Konstruktionen. Bedingt durch Hydrodynamik und dem Vorkommen sandiger Sedimente sind flache Tidegebiete durch die Entwicklung großer Felder komplexer Bodenformen gekennzeichnet. Strömungsmuster über diesen Bodenformen unterscheiden sich grundsätzlich von Strömungen über gleichmäßigen, idealisiert zweidimensionalen (2D) Bodenformen, die in Strömungskanälen und numerischen Modellen bisher betrachtet werden. Natürlichen Bodenformen sind dagegen intrinsisch dreidimensional (3D) mit komplexen Profilen, gekennzeichnet durch geschwungene Dünenrücken, Kolke, Bifurkationen, Diskontinuitäten und niedrige Leewinkel. In Küstengebieten sorgt die tidebedingte Strömungsumkehr für zusätzliche Komplexität in der Interaktion zwischen Bodenformen und Hydrodynamik. Die entsprechenden Strömungsmuster sind weitgehend unbekannt, insbesondere der Einfluss der Dreidimensionalität der Bodenformen auf die Gezeitenströmung, auch bedingt durch die Schwierigkeit, Strömungsgeschwindigkeiten und Turbulenz synoptisch mit ausreichender räumlicher und zeitlicher Auflösung zu messen. Im Rahmen der hier beschriebenen Studie wird ein dreidimensionales Transportmodell mit dem Modellsystem Delft3D erstellt, um Strömungen in natürlichen Bodenformfeldern mit entsprechend charakteristischer Morphologie zu simulieren. Dazu soll ein bestehendes und zur Simulierung von 2D Bodenformen genutztes Modell erweitert und zur Analyse der Strömungen über 3D Bodenformen verwendet werden. Mit diesem neuen Modell wird zum ersten Mal ermöglicht, Strömungsmuster und Turbulenz über natürlichen Bodenformfeldern unter realistischen Bedingungen, insbesondere unter Berücksichtigung der Umkehr der Gezeitenströmung, zu modellieren und den Einfluss einzelner morphologischer Elemente sowie deren Interaktion herauszuarbeiten. Diese Ergebnisse dienen schließlich der Optimierung und Parametrisierung kleinskaliger Teilprozesse in großmaßstäblichen hydro- und morphodynamischen Modellsystemen.

Errichtung und Betrieb des Offshore Windparks „Windbostel West“ in der deutschen ausschließlichen Wirtschaftszone (AWZ) der Nordsee

ID: 5296 Allgemeine Informationen Ergänzungstitel des Vorhabens: Bekanntmachung des BSH über die öffentliche Auslegung von Unterlagen im Rahmen des Plangenehmigungsverfahrens nach WindSeeG zur Errichtung und zum Betrieb des OWP „Windbostel West“ in der deutschen AWZ der Nordsee Kurzbeschreibung des Vorhabens: Das Vorhabengebiet für den Offshore-Windpark „Windbostel West“ liegt im Westen der deutschen ausschließlichen Wirtschaftszone der  Nordsee an der Grenze zur niederländischen ausschließlichen Wirtschaftszone mit einer Entfernung von etwa 100 km zur nächstgelegenen Insel Ameland in den Niederlanden und etwa 110 km zur nächstgelegenen deutschen Insel Borkum. Die Errichtung und der Betrieb von insgesamt 136 Offshore-Windenergieanlagen mit einer Nabenhöhe von max. 148,6 m LAT und einem Rotordurchmesser von 236 m (Gesamthöhe 267 m bis LAT bis Rotorblattspitze) sind beantragt. Die gesamt einzuspeisende Netzkapazität beträgt 2.000 MW. Die Anbindung der Offshore-Windenergieanlagen erfolgt über eine im Meeresboden verlegte parkinterne Verkabelung, welche mit einer Betriebsspannung von 66 kV betrieben wird. Auf die Errichtung einer Umspannplattform wird im OWP „Windbostel West“ verzichtet, da die Offshore-Windenergieanlagen über eine 66 kV-Direktanbindung an die künftige Konverterplattform „BalWin gamma“ angeschlossen werden. Die von den Offshore-Windenergieanlagen produzierte Energie wird somit direkt auf der Konverterplattform gesammelt und über das Exportkabel des Offshore-Netzanbindungssystems (ONAS) „BalWin3“ / NOR-9-2 an Land transportiert. Für den OWP „Windbostel West“ besteht als Neuvorhaben nach § 6 UVPG in Verbindung mit Ziffer 1.6.1 der Anlage 1 zum UVPG die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung (UVP). Raumbezug In- oder ausländisches Vorhaben: inländisch Ort des Vorhabens Verfahrenstyp und Daten Eingangsdatum der Antragsunterlagen: 30.07.2025 Art des Zulassungsverfahrens: Plangenehmigungsverfahren gemäß § 66 Abs. 1 Satz 2, 69 Abs. 3 WindSeeG i.d.F. vom 23.10.2024 UVP-Kategorie: Wärmeerzeugung, Bergbau und Energie Zuständige Behörde Verfahrensführende Behörde: Name: Bundesamt für Seeschifffahrt und Hydrographie Bernhard-Nocht-Straße 78 20359 Hamburg Deutschland http://www.bsh.de Telefonnummer: 040/3190-63410 E-Mailadresse der Kontaktperson: katharina.koehler@bsh.de Zuständige Organisationseinheit: Ordnung des Meeres, Referat: Windparkverfahren zentral voruntersuchte Flächen Stellungnahmen und Einwendungen im Rahmen des Beteiligungsverfahrens sind zu richten an: Einwendungen, Stellungnahmen und Äußerungen sind schriftlich oder zur Niederschrift an einen der folgenden Dienstsitze des Bundesamtes für Seeschifffahrt und Hydrographie zu übersenden oder abzugeben: Bundesamt für Seeschifffahrt und Hydrographie Abteilung O Bernhard-Nocht-Straße 78 20359 Hamburg oder Bundesamt für Seeschifffahrt und Hydrographie Abteilung O Neptunallee 5 18057 Rostock. Die Einwendungen müssen Namen und Anschrift der Einwenderin/des Einwenders enthalten, das betroffene Rechtsgut bzw. Interesse benennen und die befürchtete Beeinträchtigung darlegen. Mit Ablauf der Einwendungs-/Äußerungsfrist sind für dieses Plangenehmigungsverfahren alle Einwendungen/Äußerungen ausgeschlossen, die nicht auf besonderen privatrechtlichen Titeln beruhen. Vorhabenträger Windbostel West GmbH RWE Platz 4 45141 Essen Deutschland Homepage: https://www.windbostel.de/Home/about Öffentlichkeitsbeteiligung Auslegung: Auslegung in der Bibliothek des BSH in Hamburg Kontaktdaten des Auslegungsortes Bundesamt für Seeschifffahrt und Hydrographie -Bibliothek- Bernhard-Nocht-Straße 78 20359 Deutschland Öffnungszeiten des Auslegungsortes Montag, Mittwoch und Donnerstag             09:00–15:00 Uhr Dienstag                                                            09:00–16:00 Uhr Freitag                                                               09:00–14:30 Uhr Eröffnungsdatum der Auslegung 15.12.2025 Enddatum der Auslegung 14.01.2026 Auslegung in der Bibliothek des BSH in Rostock Kontaktdaten des Auslegungsortes Bundesamt für Seeschifffahrt und Hydrographie -Bibliothek- Neptunallee 5 18057 Rostock Deutschland Öffnungszeiten des Auslegungsortes Montag, Mittwoch und Donnerstag             08:30–11:30 Uhr und 13:00–15:00 Uhr Freitag                                                               08:30–11:30 Uhr und 13:00–14:00 Uhr Dienstag                                                           geschlossen Eröffnungsdatum der Auslegung 15.12.2025 Enddatum der Auslegung 14.01.2026 Ende der Frist zur Einreichung von Einwendungen: 16.02.2026 Beginn der Frist zur Einreichung von Einwendungen: 15.01.2026 Verfahrensinformationen und -unterlagen Verlinkung auf die externe Vorhabendetailseite Antrags- und Beteiligungsportal für Verkehr und Offshore-Vorhaben

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Integration in Produktionsumgebung

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Anlagenentwicklung für das Laserstrahlschweißen mit lokalem Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen bewältigt werden.

Planungswerkzeuge für die energetische Stadtplanung

Im Projekt 'Planungswerkzeuge für die energetische Stadtplanung sind erste Ansätze zur energetischen Stadtplanung auf Basis des Energiemodells URBS entwickelt worden. Die Analyse erlaubt eine Einteilung der Stadt in Vorranggebiete bezüglich der Wärmeversorgung. Die Arbeit basiert auf verschiedenen Analysemodulen. Der erste Schritt besteht in der Erstellung einer Gebäudedatenbank. Alle Gebäude der Stadt sollen hinsichtlich ihrer Geometrie, des Gebäudealters, der Bauweise, des aktuellen Energieverbrauches usw. enthalten sein. Diese Informationen werden dann genutzt, um den gegenwärtigen und zukünftigen Wärmeverbrauch zu bestimmen. Der zukünftige Gebrauch wird unter der Annahme verschiedener Sanierungsmaßnahmen bestimmt. Der erste Schwerpunkt der Arbeit liegt auf einer Analyse der Verdichtung und Ausweitung des bestehenden Fernwärmenetzes. Mit Hilfe der Gebäudedatenbank wird analysiert wo und zu welchen Kosten die Fernwärme ausgebaut werden könnte. Die Erhebungen aus dieser Analyse werden dann im nächsten Schritt an das Optimierungsmodell IJRBS übergeben. Im nächsten Schritt werden verschiedene Wärmeversorgungsmöglichkeiten hinsichtlich der technischen Realisierbarkeit und der wirtschaftlichen Wettbewerbsfähigkeit untersucht. Der zweite Schwerpunkt der Untersuchung liegt auf Wärmepumpen. Hierfür wurde ein eigenes Bodenmodell entworfen. Mit dem Modell kann bestimmt werden, wo welche Menge an Energie aus dem Boden entzogen werden kann, ohne bestimmte Nachhaltigkeitskriterien zu verletzten. All diese Informationen werden in das Energiemodell URBS-Augsburg eingepflegt. Neben der Warme- wird auch die Stromversorgung im Modell abgebildet. Anhand des Modells kann dann untersucht werden welche Technologien und Maßnahmen eingesetzt werden sollten um gesetzte Klimaschutzziele zu erreichen. Ein entscheidendes Ergebnis des Modells zeigt die starke Abhängigkeit der lokalen Entwicklung in Augsburg von der allgemeinen Entwicklung der Stromerzeugung in Deutschland. Wenn eine überregionale Lösung beispielsweise mit viel off-shore Wind und Ansätzen wie Desertec realisiert wird, dann wird in Augsburg durch die Optimierung wenig eigner Strom erzeugt, Kraft- Wärme-Kopplung und Fernwärme werden nicht ausgebaut. Städtische Klimaschutzziele sollten in diesem Fall durch Einsparungsmaßnahmen im Gebäude-Wärmebereich vorangetrieben werden. Ist die Entwicklung hin zu klimaneutralem Strom in Deutschland schleppend, dann muss in Augsburg viel mehr 'grüner ' Strom erzeugt werden. Hier kann dann der Kraft-Wärme-Kopplung eine zentrale Rolle zukommen. Die Ausweitung dieses Ergebnisses ist dringend notwendig, da sie für die aktuelle politische Diskussion von zentraler Bedeutung sind.

BAW seit sechs Jahren auch 'offshore' aktiv - Die Sicherheit der Windenergieanlagen auf dem Meer muss gewährleistet sein

Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten. Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind. Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig. Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden. In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Prozessentwicklung und Vorrichtungsentwicklung für das Laserstrahlschweißen mit mobilem Vakuum

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des LaVa-Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles, um so nennenswerte Produktivitätssteigerungen zu ermöglichen.

Optimierung der Produktivität bei der Herstellung von Gründungsstrukturen für Offshore-Windenergieanlagen durch die Implementierung des Laserstrahlschweißens im Vakuum, Teilvorhaben: Fertigungsspezifische Randbedingungen für das Laserstrahlschweißen bei der Monopile-Fertigung

Damit die Klimaziele der Bundesregierung erreicht werden, muss in den kommenden Jahren intensiv in die Erschließung und den Aufbau neuer Offshore-Windparks investiert werden. Um diese möglichst schnell und kostengünstig aufbauen zu können, bedarf es hochproduktiver Fertigungsprozesse. Die Schweißtechnik ist nach einer Studie des deutschen Verbandes für Schweißtechnik und verwandte Verfahren (DVS) aktuell der Flaschenhals bei der Herstellung von Offshore-Windenergieanlagen (OWEA). Da die maximale Produktivität konventioneller Schweißverfahren wie dem Unterpulverschweißen erreicht ist, kann eine nennenswerte Produktivitätssteigerung nur durch echte Innovationen wie der Substitution der konventionellen Verfahren durch Hochleistungsverfahren wie dem Laserstrahlschweißen im Vakuum (LaVa) erreicht werden. Ziel des Vorhabens ist ein ganzheitlicher Anlagenentwurf zur Implementierung des Verfahrens in der Herstellung von OWEA, konkret am Beispiel von Monopiles. Um LaVa in der Fertigung von Monopiles einsetzen zu können, müssen diverse Herausforderungen in Bezug auf die mechanisch-technologischen Eigenschaften der Schweißnaht, den fertigungsspezifischen Randbedingungen, der Anlagentechnologie und fertigungsspezifische Nachweise innerhalb der Fertigung bewältigt werden.

Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion, Teilvorhaben: Partikelbasierte Analyse von Sedimentumlagerungen und ihres Einflusses auf die Kabeldynamik

Das Verbundvorhaben 'Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion (CableProtect)' widmet sich den komplexen Wechselwirkungen zwischen Stromkabel, Struktur, Kolkschutz und Meeresboden im Anschlussbereich des Kabels an die Tragstruktur. Anlass dafür waren Schäden in signifikanter Größenordnung insbesondere am Schutzsystem der Unterwasserverkabelung. Derartige Schäden sind zurückzuführen auf hydrodynamische Prozesse im Umfeld der Gründungsstrukturen. Wellen und Strömungen verursachen dort Bewegungen des frei hängenden Kabels, welche sich auch auf den Teil des Kabels auswirken, der auf dem Kolkschutz bzw. Meeresboden aufliegt. Außerhalb des Kolkschutzes kommt es zu Sedimentumlagerungen und zur Bildung von Randkolken, welche einen wechselseitigen Einfluss auf die Kabelbewegungen nehmen und zu Lageinstabilitäten führen. Das Teilvorhaben 'Partikelbasierte Analyse von Sedimentumlagerungen und ihres Einflusses auf die Kabeldynamik (CableProtect)' widmet sich im Rahmen dieses Verbundvorhabens hydrodynamisch induzierten Sedimentumlagerungen im Auflagerbereich des Kabels. Mit einer gekoppelten CFD-DEM Modellierung wird ein innovativer Ansatz verwendet, um Erosionsprozesse auf der Mikro-Ebene der Körner zu betrachten und so neue Einblicke in deren Wirkmechanismen zu erhalten. Durch Kopplung mit den Fluid-Struktur Modellen der Verbundpartner können die Einflüsse aus dem oszillierenden Stromkabel sowie aus Gründungsstruktur und Kolkschutz unter realitätsnahen Randbedingungen abgebildet werden. Ziel dieses Teilvorhabens ist es, auf der Grundlage eines verbesserten Verständnisses der Sedimentumlagerungsprozesse wissenschaftlich abgesicherte und praxistaugliche Bemessungsregeln für die geomechanischen Aspekte der Kabelanbindung zu erarbeiten und so zu einer höheren Zuverlässigkeit von Offshore-Windenergieanlagen beizutragen.

1 2 3 4 588 89 90