Der vorliegende Bericht präsentiert Vermeidungskostenkurven für Treibhausgasemissio-nen (THG-VKK) im stationären Teil des Emissionshandelssystems der Europäischen Union (stationäres EU ETS) für die Jahre 2030 und 2040. Sie umfassen alle 31, am EU ETS beteiligten Länder (inkl. Großbritannien) und alle relevanten Tätigkeiten/Sektoren mit Aus-nahme des Luftverkehrssektors. Bei der Entwicklung der EU ETS-spezifischen Vermeidungskostenkurve kam ein System aus zwei Modellen zum Einsatz: Enertile, ein Modell zur Optimierung des Europäischen Stromsystems und FORECAST-Industry, ein Bottom-up-Simulationsmodell für die Industriesektoren inklusive Raffinerien. Neben einem Basisszenario wurden drei Sensitivitätsanalysen zur Überprüfung der Robustheit der Ergebnisse durchgeführt.. Dieser Bericht enthält die entwickelten VKK, die Ergebnisse der Sensitivitätsanalysen sowie eine detaillierte Darstellung der eingesetzten Modelle und getroffenen Annahmen, um die Interpretation der VKK zu ermöglichen. Zusätzlich wurden die Ergebnisse mit anderen Studien verglichen und es werden die größten methodischen und inhaltlichen Herausforderungen bei der Entwicklung der VKK diskutiert. Quelle: Forschungsbericht
Das Projekt "Planungswerkzeuge für die energetische Stadtplanung" wird vom Umweltbundesamt gefördert und von Technische Universität München, Lehrstuhl für Energiewirtschaft und Anwendungstechnik durchgeführt. Im Projekt 'Planungswerkzeuge für die energetische Stadtplanung sind erste Ansätze zur energetischen Stadtplanung auf Basis des Energiemodells URBS entwickelt worden. Die Analyse erlaubt eine Einteilung der Stadt in Vorranggebiete bezüglich der Wärmeversorgung. Die Arbeit basiert auf verschiedenen Analysemodulen. Der erste Schritt besteht in der Erstellung einer Gebäudedatenbank. Alle Gebäude der Stadt sollen hinsichtlich ihrer Geometrie, des Gebäudealters, der Bauweise, des aktuellen Energieverbrauches usw. enthalten sein. Diese Informationen werden dann genutzt, um den gegenwärtigen und zukünftigen Wärmeverbrauch zu bestimmen. Der zukünftige Gebrauch wird unter der Annahme verschiedener Sanierungsmaßnahmen bestimmt. Der erste Schwerpunkt der Arbeit liegt auf einer Analyse der Verdichtung und Ausweitung des bestehenden Fernwärmenetzes. Mit Hilfe der Gebäudedatenbank wird analysiert wo und zu welchen Kosten die Fernwärme ausgebaut werden könnte. Die Erhebungen aus dieser Analyse werden dann im nächsten Schritt an das Optimierungsmodell IJRBS übergeben. Im nächsten Schritt werden verschiedene Wärmeversorgungsmöglichkeiten hinsichtlich der technischen Realisierbarkeit und der wirtschaftlichen Wettbewerbsfähigkeit untersucht. Der zweite Schwerpunkt der Untersuchung liegt auf Wärmepumpen. Hierfür wurde ein eigenes Bodenmodell entworfen. Mit dem Modell kann bestimmt werden, wo welche Menge an Energie aus dem Boden entzogen werden kann, ohne bestimmte Nachhaltigkeitskriterien zu verletzten. All diese Informationen werden in das Energiemodell URBS-Augsburg eingepflegt. Neben der Warme- wird auch die Stromversorgung im Modell abgebildet. Anhand des Modells kann dann untersucht werden welche Technologien und Maßnahmen eingesetzt werden sollten um gesetzte Klimaschutzziele zu erreichen. Ein entscheidendes Ergebnis des Modells zeigt die starke Abhängigkeit der lokalen Entwicklung in Augsburg von der allgemeinen Entwicklung der Stromerzeugung in Deutschland. Wenn eine überregionale Lösung beispielsweise mit viel off-shore Wind und Ansätzen wie Desertec realisiert wird, dann wird in Augsburg durch die Optimierung wenig eigner Strom erzeugt, Kraft- Wärme-Kopplung und Fernwärme werden nicht ausgebaut. Städtische Klimaschutzziele sollten in diesem Fall durch Einsparungsmaßnahmen im Gebäude-Wärmebereich vorangetrieben werden. Ist die Entwicklung hin zu klimaneutralem Strom in Deutschland schleppend, dann muss in Augsburg viel mehr 'grüner ' Strom erzeugt werden. Hier kann dann der Kraft-Wärme-Kopplung eine zentrale Rolle zukommen. Die Ausweitung dieses Ergebnisses ist dringend notwendig, da sie für die aktuelle politische Diskussion von zentraler Bedeutung sind.
Das Projekt "Interdisziplinäre Forschungsarbeiten zum ökologischen Landbau auf Hof Ritzerau (Norddeutschland)" wird vom Umweltbundesamt gefördert und von Universität Kiel, Ökologie-Zentrum durchgeführt. Hof Ritzerau liegt im Kreis Herzogtum Lauenburg im Bundesland Schleswig-Holstein, nordöstlich von Hamburg. Ursprünglich wurde Hof Ritzerau nach konventionellen Methoden bewirtschaftet. Sein neuer Eigentümer, Herr Günther Fielmann, hat die Umstellung des Betriebes auf ökologische Landwirtschaft veranlasst. Diese Umstellung wird wissenschaftlich begleitet, die Untersuchungen werden durch Herrn Fielmann finanziert. Ziel der Forschungsarbeiten ist es die Veränderungen, die mit der Umstellung auf die ökologische Anbauweise einhergehen, in ihrem zeitlichen Ablauf zu dokumentieren und die aus Sicht des Natur- und Landschaftsschutzes erwünschten bzw. angestrebten Effekte durch gezielte Maßnahmen zu fördern. Das bedeutet, dass die Pflanzenbaumaßnahmen des Ökolandbaus durch eine zeitliche und vor allem auch räumliche Feinabstimmung optimiert werden sollen. Um dieses Ziel zu erreichen ist folgende Frage zu klären: Wie, in welcher Intensität, zu welchem Zeitpunkt und wo haben einzelne Maßnahmen zu erfolgen, damit die Ziele des Natur- und Landschaftsschutzes in Abstimmung mit betriebswirtschaftlichen Vorgaben umgesetzt werden können?
Das Projekt "Dispo-Speed-Verfahren" wird vom Umweltbundesamt gefördert und von Botzenhart und Bosch GmbH & Co. KG durchgeführt.
Das Projekt "Evaluierung von Verbesserungen in QPE und QPN in einem Echtzeit-vorhersagesystem für Abfluss und Überflutungen mit Datenassimilatio" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.
Das Projekt "Online-Optimierung eines Absorptions- und Desorptionsprozesses für die Koksofengasreinigung" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Prozess- und Anlagentechnik durchgeführt. In der Prozessindustrie sind die Anforderungen an die Verfahren wie preiswertes Design und umweltschonenden Betrieb vielseitig, und teilweise auch gegenläufig. Hierdurch steigt der Bedarf an flexibleren Produktionsanlagen, um den steigenden Anforderungen bezüglich der schnell wechselnden Marktanforderungen und der Umweltverträglichkeit gerecht zu werden. Ressourcenschonung und Reduzierung der Umweltbelastung sind Ziele, die die gängigen Verfahren aufgrund der sich ändernden Umweltauflagen (Reinheit der Gasemission) an die Grenzen der Wirtschaftlichkeit bringen. Die Reaktivabsorption und die anschließende Desorption stellt durch die Kombination von Stofftrennung und chemischer Reaktion in Mehrkomponentensystemen ein sehr komplexes Verfahren mit einem hohen Optimierungspotential dar. Dies gilt insbesondere für die im Rahmen des Forschungsprojektes zu untersuchende Ammoniak-Schwefelwasserstoff-Kreislaufwäsche zur Reinigung von Kokereiabgasen. Bei diesem industriell relevanten und hier exemplarisch ausgewählten Prozess basiert der konventionelle Betrieb integrierter Kolonnensysteme auf der vorherigen Auslegung für einen konstanten Betriebspunkt. In der Realität ändern sich jedoch die Randbedingungen, so dass die Prozesse am vorgegebenen Betriebspunkt nicht optimal betrieben werden können. Hier liegt die besondere wissenschaftliche Herausforderung bezüglich der Online-Optimierung, die Umweltrestriktionen sowie alle Produktanforderungen unter den gegebenen Anlagenbegrenzungen und den sich ändernden Echtzeit-Randbedingungen zur Minimierung der Betriebskosten gleichzeitig einzuhalten. Im Rahmen des Forschungsvorhabens wird eine Methodik zur Online Optimierung entwickelt und an einer realen Anlage (AS-Kreislaufwäsche) im Pilotmaßstab erprobt und bewertet. Als Ergebnis ist ein effizientes robustes Online-Optimierungssystem zur Ermittlung optimaler Prozessführungsstrategien für dynamische nichtlineare große Systeme unter Echtzeit-Randbedingungen zu erwarten. Die zu entwickelnde Methodik der Online-Optimierung ist allgemeingültig und soll für die Optimierung anderer Prozesse übertragbar sein.
Das Projekt "Komplexe Prozessoptimierung" wird vom Umweltbundesamt gefördert und von Universität Duisburg, Fachbereich 7 Maschinenbau, Fachgebiet Thermodynamik durchgeführt. Fuer chemische Prozesstechnologien wird durch mathematische Optimierungsmethoden der Verbrauch an Waschmitteln und Endenergie simultan minimiert.
Das Projekt "Bio-ökonomische Modelle zur Untersuchung der Effektivität und Effizienz von fischereiwirtschaftlichen und politischen Aktivitäten" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Agrarökonomie - Agrarpolitik und Marktlehre durchgeführt. Es wird um Förderung eines 6-monatigen Forschungsaufenthaltes in Australien nachgesucht. Der Aufenthalt soll dazu dienen, ein Forschungsprojekt weiterzuentwickeln, das 1999 begonnen wurde. Das Forschungsprojekt selbst ist als ein Teil einer langjährigen Zusammenarbeit zwischen australischen Ökonomen McDonald, Campbell, Tesdell) und dem Antragsteller hervorgegangen. Im Förderungszeitraum wird angestrebt, (a) eine stochastische Version eines bereits bestehenden mathematischen Optimierungsmodells der deutschen Fischereiflotte zu entwickeln und (b) diese mit biologischen Modellen der Fischbestandsentwicklung (rekursiv) dynamisch zu einem Fanggebietsmodell zu verkoppeln. Die Literatur- und Datensammlung ist weitgehend abgeschlossen und soll während des Förderungszeitraumes zu einem Übersichtsbeitrag ausgearbeitet werden. Ebenso ist die Modellstruktur weitgehend ausdiskutiert und erscheint mit den vorhandenen Daten und technischen Informationen ausfüllbar zu sein.
Das Projekt "Räumliche Optimierung als Strategie waldbaulicher Bestandesplanung" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Numerische Mathematik und Optimierung durchgeführt. Die ökologische Forschung zu Einzelbaumeffekten in Mischbeständen eröffnet tiefere Einsichten in die Wechselbeziehungen zwischen Baumarten und -individuen. Sie ermöglicht darüber hinaus die rationale Planung der Gestaltung von Waldbeständen. In diesem Projekt sollen die Kenntnisse über ökologische Felder von Einzelbäumen erstmals mit Methoden der Räumlichen Optimierung dazu genutzt werden, Empfehlungen für die Strukturierung von Beständen zu erarbeiten. Hierzu soll das Wissen über einige Einzelbaumeffekte so aufbereitet werden, dass es mit Algorithmen der mathematischen Optimierung bearbeitet werden kann. Die dabei zum Einsatz kommenden nichtlinearen Algorithmen und die verwendete Software erlauben eine derart nachhaltige Optimierung, so dass trotz zahlreicher Nebenbedingungen und multikriterieller Optimierungsziele im Einzelbestand mit über hundert Baumindividuen vertrauenswürdige Ergebnisse erzielt werden. Diese Methoden sichern ökosystemorientierte Nachhaltigkeitsindikatoren in forstlichen Managementmodellen und liefern einen Beitrag zur horizontalen Integration verschiedener Waldfunktionen auf Bestandesebene.
Das Projekt "First-principles kinetic modeling for solar hydrogen production" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.
Origin | Count |
---|---|
Bund | 668 |
Type | Count |
---|---|
Förderprogramm | 667 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 667 |
Language | Count |
---|---|
Deutsch | 641 |
Englisch | 65 |
Resource type | Count |
---|---|
Keine | 359 |
Webseite | 309 |
Topic | Count |
---|---|
Boden | 344 |
Lebewesen & Lebensräume | 345 |
Luft | 298 |
Mensch & Umwelt | 667 |
Wasser | 251 |
Weitere | 668 |