Das Projekt "5. Deutsch-Amerikanischer Workshop ueber bodennahes Ozon vom 24. bis 27.9.1996 in Berlin" wird vom Umweltbundesamt gefördert und von Prof.Dr. Karl H. Becker durchgeführt.
Das Projekt "Transport and fate of contaminants (WP EXPO 2)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. Transport processes: The behaviour of contaminants in the water and sediments in river basins cannot be studied without taking into account the relevant processes in the basins and the boundaries with the upstream river system and the coastal region. The rivers that flow into these coastal areas take a considerable amount of contaminated sediments which are stored for longer or shorter periods in these estuaries. Retention of sediments will take place in the low-energy areas such as the smaller tributaries in the river basin. Within this work package various empirical formulations and characteristics will be defined that typically determine the sediment retention (e.g. hydraulic load and specific runoff). The estuarine regions of a river basin represent a diverse and complex water system. The tidal motion and the density currents induced by the change from fresh to saltwater are of particular importance in describing the water quality of estuaries. In the estuary strong intrusion of saltwater landward and current reversal might occur. The coastal area is characterised by the typical oscillations of the tidal movement and has a complicated current structure resulting from the horizontal intrusion of saline water and vertical stratification due to density differences. It is obvious that the estimation of the time and spatial behaviour of the exposure of contaminants in estuaries is complicated by the effects of tidal motion and chemical behaviour. In order to have an accurate description of the fate and distribution of contaminants in estuarine regions, a carefully analysis of model concepts and implementation is needed in this work package to assess the degree of complexity and valid merging of process formulations. Bio-chemical fate processes: Besides transport processes compounds are subject to many distribution and transformation processes or reactions which determine the exposure of contaminants within a river basin. Physico-chemical processes such as sorption, partitioning and evaporation determine the distribution between the water, air and particulate phases. Most compounds are subjected to transformation or degradation reactions, such as hydrolysis, photo-degradation, redox reactions and degradation by micro-organisms. The significance of degradation processes may vary with depth. For several compounds degradation is most prominent in the upper water layers, due to photo-degradation. Biodegradation rates in the lower water column are assumed to be lower. In anoxic sediments, biodegradation rates usually are much slower than in the water column. Many trace metals and persistent organic compounds are strongly bound to particulate phases or dissolved organic material or in the case of trace metals bound to inorganic and organic ligands. Usually only a limited fraction of a specific compound is present in a truly free dissolved state and available for uptake by aquatic organisms. usw.
Das Projekt "Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. General Information: Summary Observations have shown that ozone levels in the upper troposphere (UT) and the lower stratosphere (LS) have changed over the last two to three decades. The observed reductions in the LS, which has been seen in the Northern Hemisphere during the last decade most probably are caused by man made emissions (CFCs and bromine compounds) in conjunction with particles and PSCs formation. For the UT, observations have shown an ozone increase for at least two decades, but less so the last few years. The causes of these changes are poorly understood. Modelling studies have been used to estirnate the impact of different man made sources on the chemical composition, and on ozone in particular in the UT and the LS. These studies show that there are significant uncertainties in the estimates of the impact which are a result of limited knowledge of atmospheric processes and which have to be improved in order to come up with better estimates of the impact of aircraft emissions on ozone in the UT and the LS. Emissions from aircraft (NOx, H20, SO2 and soot) at cruising altitudes are likely to affect the ozone chemistry in the UT and the LS in two ways: directly through enhanced photochemical activity (emission of NOx and water vapour), and through enhanced particle formation from NOx, water vapour and SO2. The impact of aircraft emissions is of particular importance to study, as the emissions are projected to grow rapidly over the next two decades compared to emissions from most other sources, and because there are significant regional differences in the impact on ozone and in the projected growth in the emissions. It is therefore likely that future aircraft emissions have the potential to perturb ozone levels significantly. The overall objective of the study is to improve our scientific basis for estimates of the impact of aircraft emissions on the chemical composition in the UT and in the LS, and to perform 3-D model studies of the large scale (regional to hemispheric) perturbation of ozone from a projected future fleet of subsonic and supersonic aircraft. Focus in the study will be on two main areas: a) The role of heterogeneous processes in the UT and the LS and how these processes can be parameterised in global 3-D CTMs, and b) modelling studies of the future impact of subsonic as well as supersonic traffic on the ozone in the UT and the LS, with particular emphasis on the regional contribution to global scale ozone from regions with the largest projected traffic (Europe - US, South Asia and surrounding areas). The tools for these studies will be state of the art 3-D CTMs (Chemical Tracer Models) available among the participating groups. The CTMs have different spatial resolution, transport parameterisation, and parameterisation of the chemical processes, including heterogeneous chemistry,... Prime Contractor: University of Oslo, Department of Geophysics; Oslo; Norway.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Dr. Born - Dr. Ermel GmbH - Büro IPU - Dresden durchgeführt. Entwicklung eines technischen Systems um anthropogene Spurenstoffe durch photokatalytische Oxidation in Kombination mit Ozon (im folgendem photokatalytische Ozonierung genannt) aus Abwasser zu entfernen. Ein Großteil von Pharmazeutika gelangt unverändert oder in Form von Metaboliten über den Urin in das Abwasser. Es ist somit sinnvoll ein geeignetes und anwendbares System zu entwickeln um eine weitergehende Abwasserreinigung zu gewährleisten. Die bisher eingesetzten Verfahren sind aus verschiedenen Gründen zu hinterfragen. Die am häufigsten angewendeten Prozesse zur Entfernung von Spurenstoffen aus kommunalem Abwasser sind die Ozonierung und das PAK- Pulveraktivkohle Verfahren (Abegglen, Siegrist, 2012). Diese Verfahren haben erhebliche Defizite in Bezug auf die Elimination relevanter Spurenstoffe aus dem Abwasser. Um einen sicheren und zuverlässigen Abbau von relevanten Spurenstoffen aus dem Abwasser zu gewährleisten, soll in diesem Projekt ein Verfahren zur Anwendung gebracht werden, bei dem Ozonierung und Photokatalyse eingesetzt werden. Die photokatalytische Ozonierung ist aufgrund verschiedener Synergieeffekte eine attraktive Alternative gegenüber den bereits erprobten Verfahren. Ziel dieses Vorhabens ist es ein technisches System auf Grundlage der photokatalytischen Ozonierung zu entwickeln und zu verbessern. Dabei werden insbesondere die Abbauleistung und der Energieverbrauch Schwerpunkte der Forschung, damit die Technik zum Produkt entwickelt werden kann.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. HyCats soll eine skalierbare Technologie für eine wirtschaftliche Herstellung von H2 zur Umsetzung mit CO2 bereitstellen. Durch Zusammenarbeit von Industrie, angewandter Forschung und Grundlagenforschung sollen systematisch neue Photokatalysatoren für die Wasserspaltung und die zugehörige Reaktortechnik entwickelt und erprobt werden. Als Benchmark wird zunächst eine Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik angestrebt. Das Projekt soll die erforderlichen Entwicklungen anstoßen, um bis 2020 eine Netzparität zu erreichen. Synthesen werden im Hochdurchsatzbetrieb mit einem von Zinsser entwickelten Syntheseroboter am LIKAT durchgeführt, die H2-Entwicklung wird direkt am Syntheseroboter gemessen. Auf Basis der Ergebnisse des LIKAT sollen bei HCST Proben unter produktionsanalogen Bedingungen hergestellt werden. LUH wird die Materialien von HCST und LIKAT sowie die Elektroden von ODB unter künstlicher Solarstrahlung und mit monochromatischer Strahlung photochemisch und spektroskopisch charakterisieren. Theoretische Simulationen der UBonn fließen in die Syntheseplanung des LIKAT ein und werden mit Messergebnissen der LUH abgeglichen. Das DLR wird aussichtsreiche Nutzungsmöglichkeiten mit konzentrierter Solarstrahlung testen. ODB wird dünne Schichten aus Proben der Partner herstellen und in einem Teststand für die Bewertung von Elektrodensystemen aufbauen. Die Zellen werden in Feldversuchen dem Sonnenlicht in Langzeitmessungen ausgesetzt.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von H.C. Starck GmbH, Werk Goslar durchgeführt. HyCats soll eine skalierbare Technologie für eine wirtschaftliche Herstellung von H2 zur Umsetzung mit CO2 bereitstellen. Durch Zusammenarbeit von Industrie, angewandter Forschung und Grundlagenforschung sollen systematisch neue Photokatalysatoren für die Wasserspaltung und die zugehörige Reaktortechnik entwickelt und erprobt werden. Als Benchmark wird zunächst eine Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik angestrebt. Das Projekt soll die erforderlichen Entwicklungen anstoßen, um bis 2020 eine Netzparität zu erreichen. Synthesen werden im Hochdurchsatzbetrieb mit einem von Zinsser entwickelten Syntheseroboter am LIKAT durchgeführt, die H2-Entwicklung wird direkt am Syntheseroboter gemessen. Auf Basis der Ergebnisse des LIKAT sollen bei HCST Proben unter produktionsanalogen Bedingungen hergestellt werden. LUH wird die Materialien von HCST und LIKAT sowie die Elektroden von ODB unter künstlicher Solarstrahlung und mit monochromatischer Strahlung photochemisch und spektroskopisch charakterisieren. Theoretische Simulationen der UBonn fließen in die Syntheseplanung des LIKAT ein und werden mit Messergebnissen der LUH abgeglichen. Das DLR wird aussichtsreiche Nutzungsmöglichkeiten mit konzentrierter Solarstrahlung testen. ODB wird dünne Schichten aus Proben der Partner herstellen und in einem Teststand für die Bewertung von Elektrodensystemen aufbauen. Die Zellen werden in Feldversuchen dem Sonnenlicht in Langzeitmessungen ausgesetzt.
Das Projekt "Teilprojekt 6" wird vom Umweltbundesamt gefördert und von ODB-Tec GmbH & Co. KG durchgeführt. HyCats soll eine skalierbare Technologie für eine wirtschaftliche Herstellung von H2 zur Umsetzung mit CO2 bereitstellen. Durch Zusammenarbeit von Industrie, angewandter Forschung und Grundlagenforschung sollen systematisch neue Photokatalysatoren für die Wasserspaltung und die zugehörige Reaktortechnik entwickelt und erprobt werden. Als Benchmark wird zunächst eine Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik angestrebt. Das Projekt soll die erforderlichen Entwicklungen anstoßen, um bis 2020 eine Netzparität zu erreichen. Synthesen werden im Hochdurchsatzbetrieb mit einem von Zinsser entwickelten Syntheseroboter am LIKAT durchgeführt, die H2-Entwicklung wird direkt am Syntheseroboter gemessen. Auf Basis der Ergebnisse des LIKAT sollen bei HCST Proben unter produktionsanalogen Bedingungen hergestellt werden. LUH wird die Materialien von HCST und LIKAT sowie die Elektroden von ODB unter künstlicher Solarstrahlung und mit monochromatischer Strahlung photochemisch und spektroskopisch charakterisieren. Theoretische Simulationen der UBonn fließen in die Syntheseplanung des LIKAT ein und werden mit Messergebnissen der LUH abgeglichen. Das DLR wird aussichtsreiche Nutzungsmöglichkeiten mit konzentrierter Solarstrahlung testen. ODB wird dünne Schichten aus Proben der Partner herstellen und in einem Teststand für die Bewertung von Elektrodensystemen aufbauen. Die Zellen werden in Feldversuchen dem Sonnenlicht in Langzeitmessungen ausgesetzt.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Katalyse e.V. an der Universität Rostock durchgeführt. HyCats soll eine skalierbare Technologie für eine wirtschaftliche Herstellung von H2 zur Umsetzung mit CO2 bereitstellen. Durch Zusammenarbeit von Industrie, angewandter Forschung und Grundlagenforschung sollen systematisch neue Photokatalysatoren für die Wasserspaltung und die zugehörige Reaktortechnik entwickelt und erprobt werden. Als Benchmark wird zunächst eine Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik angestrebt. Das Projekt soll die erforderlichen Entwicklungen anstoßen, um bis 2020 eine Netzparität zu erreichen. Synthesen werden im Hochdurchsatzbetrieb mit einem von Zinsser entwickelten Syntheseroboter am LIKAT durchgeführt, die H2-Entwicklung wird direkt am Syntheseroboter gemessen. Auf Basis der Ergebnisse des LIKAT sollen bei HCST Proben unter produktionsanalogen Bedingungen hergestellt werden. LUH wird die Materialien von HCST und LIKAT sowie die Elektroden von ODB unter künstlicher Solarstrahlung und mit monochromatischer Strahlung photochemisch und spektroskopisch charakterisieren. Theoretische Simulationen der UBonn fließen in die Syntheseplanung des LIKAT ein und werden mit Messergebnissen der LUH abgeglichen. Das DLR wird aussichtsreiche Nutzungsmöglichkeiten mit konzentrierter Solarstrahlung testen. ODB wird dünne Schichten aus Proben der Partner herstellen und in einem Teststand für die Bewertung von Elektrodensystemen aufbauen. Die Zellen werden in Feldversuchen dem Sonnenlicht in Langzeitmessungen ausgesetzt.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Physik durchgeführt. Das Verhalten der photoaktivierbaren Nanoformulierungen Foslip und Fospeg soll mit speziellen optischen Methoden untersucht werden. Dieser Ansatz erlaubt eine genauere Bestimmung wichtiger Parameter wie z.B. der intrazellulären Wirkstofffreisetzung und kann in Zukunft einen entscheidenden Beitrag zur Analytik photoaktivierbarer Wirkstoffe leisten. Die Arbeit beinhaltet 5APs. AP1: Untersuchungen zur Aufnahme der beiden Formulierungen und deren Phototoxizität an den ausgewählten Zelllinien. Die Überprüfung der Reproduzierbarkeit der Ergebnisse, Herausarbeitung evtl. Unterschiede zwischen den Zelllinien. Bestimmung der Phototoxizität: mittels z.B. MTT-Test, Resazurin- oder Caspase-Assay. Im AP2 wird als innovativster Schritt des Projektes die intrazelluläre Freisetzung des PS aus den beiden Formulierungen über die Beobachtung der 1O2 -Lumineszenzkinetik und der Triplettlebensdauer des PS verfolgt. Gleichzeitig soll die Frage nach evtl. Unterschieden im Verhalten der einzelnen Zelllinien untersucht werden um Rückschlüsse auf die Rückverteilung des PS in den Blutstrom und somit auch auf die Pharmakokinetik zu ermöglichen. AP3: Nutzung von FLIM und CLSM (costaining) zur Beurteilung der Freisetzung des PS aus den Formulierungen mit den gleichen Teilaspekten wie in AP2. In AP4 wird kontinuierlich geprüft ob und in welchem Maß die Ergebnisse aus AP2 und AP3 korrelieren. AP5: Aufbereitung der Daten für das EDV-gestützte PBPK- Modell, Publikation der Ergebnisse.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar durchgeführt. Ziel des beantragten Projektes, ist die Entwicklung eines technischen Systems um anthropogene Spurenstoffe durch photokatalytische Oxidation in Kombination mit Ozon (im folgendem photokatalytische Ozonierung genannt) aus dem Abwasser zu entfernen. Ziel dieses Vorhabens ist es ein technisches System auf Grundlage der photokatalytischen Ozonierung zu entwickeln und zu verbessern. Dabei werden insbesondere die Abbauleistung und der Energieverbrauch Schwerpunkte der Forschung, damit die Technik zum Produkt entwickelt werden kann.
Origin | Count |
---|---|
Bund | 463 |
Land | 4 |
Type | Count |
---|---|
Förderprogramm | 460 |
Text | 4 |
Umweltprüfung | 1 |
unbekannt | 2 |
License | Count |
---|---|
closed | 6 |
open | 460 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 466 |
Englisch | 54 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 2 |
Keine | 294 |
Webseite | 172 |
Topic | Count |
---|---|
Boden | 298 |
Lebewesen & Lebensräume | 317 |
Luft | 344 |
Mensch & Umwelt | 467 |
Wasser | 347 |
Weitere | 461 |