Mit der bodenbezogenen Verwertung von Klärschlämmen als Dünger sind Risiken verbunden. Zum einen enthalten diese eine hohe Vielfalt an Bakterien (einschließlich Pathogenen), zum anderen sind sie mit einer Vielzahl an Schadstoffen verunreinigt, von denen einige Gruppen (z.B. Schwermetalle, Antibiotika und Desinfektionsmittel) selektiv auf Antibiotika-resistente Bakterien wirken. Da in Kläranlagen Bakterien aus unterschiedlichen Einspeisungsquellen unter hoher Nährstoffverfügbarkeit und in Gegenwart dieser selektiven Substanzen inkubiert werden, stellen Kläranlagen sogenannte "hotspots" für horizontalen Gentransfer dar. Dieser Gentransfer erfolgt über mobile genetische Elemente, welche den Austausch von genetischem Material (einschließlich von Resistenzgenen) zwischen unterschiedlichen Bakterienarten ermöglichen. Entsprechend gelten Klärschlämme als eine der Haupteintragsrouten von Schadstoffen, Antibiotika-resistenten Bakterien, Antibiotika-Resistenzgenen und mobilen genetischen Elementen in den Boden. Ziel dieser Studie war es, den Einfluss der Konzentration von selektiven Substanzen in Klärschlämmen aus Abwasserbehandlungsanlagen kleiner bis mittlerer Ausbaugröße auf das Auftreten von Antibiotika-Resistenzgenen, mobilen genetischen Elementen und deren Übertragbarkeit auf andere Bakterien, sowie auf das Auftreten von Indikatorbakterien zu untersuchen. Desweiteren wurde das Schicksal von Resistenzgenen und mobilen genetischen Elementen nach Klärschlammausbringung in Bodenmikrokosmen untersucht. Basierend auf den Ergebnissen und der bestehenden Fachliteratur sollen möglichst Grenzwerte für die Konzentration an selektiven Schadstoffen in Klärschlämmen vorgeschlagen werden. Die Ergebnisse der Studie lassen erkennen, dass Klärschlämme aus kleinen Abwasserbehandlungsanlagen ähnlich stark mit Resistenzgenen, mobilen genetischen Elementen und selektiven Substanzen kontaminiert sind wie Klärschlämme aus großen Anlagen. Es ist nicht möglich, aus den gewonnenen Ergebnissen konkrete Grenzwerte für selektive Sustanzen in Klärschlamm abzuleiten. Dennoch lassen sich insbesondere für Fluorochinolone, Doxycylin, Trimethoprim, Triclosan, Kupfer und Zink zahlreiche signifikante und positive Korrelationen zur Abundanz mit Resistenzgenen und mobilen genetischen Elementen feststellen. Diese Substanzen könnten sich als geeignete Kandidaten für die tiefergehende Erarbeitung von Grenzwerten in Klärschlamm dienen. Quelle: Forschungsbericht
Das Projekt "Lokalisation der toxischen Metalle Blei und Cadmium in Pflanzenzellen" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Institut für Allgemeine Botanik und Botanischer Garten durchgeführt. Lebenden bzw. vorher fixierten Pflanzen bzw. Pflanzenteilen wird Blei bzw. Cadmium in unterschiedlichen Konzentrationen unterschiedlich lang angeboten. Die eingedrungenen und gefaellten Metalle werden elektronenmikroskopisch und unter Zuhilfenahme einer EDAX-Mikrosonde bzw. eines Laser-Mass-Analyzers (LAMMA) lokalisiert und charakterisiert. Ueber die Lokalisation der toxischen Schwermetalle Blei und Cadmium in Pflanzenzellen liegen bisher wenige Angaben vor. Um die Wirkungsmechanismen der Schwermetalle besser als bisher verstehen zu koennen, erscheint es notwendig, die Lokalisation eingebrachter Schwermetalle zu untersuchen. Damit werden praezisere Aussagen ueber die Entgiftungsmechanismen und Schaeden moeglich. Vorlaeufige eigene elektronenmikroskopische Untersuchungen lassen erkennen, dass das wenige Blei, das in Zellen ueberhaupt eindringt, ueber die Dictyosomen und ueber Vesikel des endoplasmatischen Retikulums entweder in Vakuolen geschleust oder wieder nach aussen transportiert wird. Die Huellen der Mitochondrien und Plastiden scheinen auch als Filter zu wirken, da in diesen Kompartimenten hoehere Konzentrationen als im Inneren der erwaehnten Organellen anfallen. Eventuell wird vor energiereichen Metaboliten an diesen Reaktionsorten Phosphorsaeure durch zelleigene Phosphatasen abgespalten, was zu einer Fuellung der Bleiionen als Bleiphosphat fuehrt. Das anfallende schwerloesliche Bleiphosphat wird dann an Orte transportiert, an denen es weniger Schaden anrichten kann.
Das Projekt "Mobile genetische Elemente, Introns Gruppe II und III, als phylogenetsiche Marker" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Biologie: Zoologie und Biologiedidaktik durchgeführt. Die Euglenida sind einzellige Flagellaten mit großer Heterogenität. Die Entstehung der phototrohen Euglenida durch eine sekundäre Endocytobiose ist ein beeindruckendes Beispiel für retikulare Evolution. Eine Besonderheit der plastidären Genome von Euglena gracilis und Euglena longa ist der hohe Anteil an Introns der Gruppen II und III. Da Intronerwerb und -verlust seltene evolutionäre Ereignisse sind, eignen sich Intronsequenzen als molekulare Marker, um die Phylogenese zu rekonstruieren. Hier werden Introns von verschiedenen Genen der Plastiden auf ihre Verteilung innerhalb der phototrophen Euglenida untersucht.
Das Projekt "Funktionelle Analyse von non-Resistenzfaktoren der pandemischen Extended-Spektrum Beta-Laktamase bildenden Escherichia coli-Sequenztypen ST131 und ST648" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Hygiene und Infektionskrankheiten der Tiere durchgeführt. Im letzten Jahrzehnt nahm die Prävalenz Extended-Spektrum Beta-Laktamase (ESBL) (1)- bildender Escherichia coli in Human- und neuerdings auch Tiermedizin dramatisch zu. Phylogenetische Analysen mittels Multilokus-Sequenztypisierung belegen eine Assoziation dieser multiresistenten Bakterien mit bestimmten Sequenztypen (STs). Innerhalb dieser ESBL-STs existieren pandemische klonale Linien, die in unterschiedlichsten Habitaten auftreten. Sie werden in klinischen aber auch in Wildtier- und Umwelt-proben nachgewiesen, somit unabhängig von einem konstanten Antibiotika-Selektionsdruck. Die ESBL-Linien ST131 und ST648 zeigen eine für E. coli ungewöhnliche Kombination von Resistenz und Virulenz. Dies kann der entscheidende Faktor für die pandemische Ausbreitung dieser Sequenztypen sein. Im vorliegenden Antrag sollen die zugrundeliegenden Mechanismen dieses Phänomens anhand folgender Hypothesen aufgeklärt werden: Stämme der Linien ST131 und ST648 besitzen (i) eine erhöhte-Plasmidaufnahme-Aktivität; (ii) ein phylogenetisch determiniertes Kerngenom, dessen Interaktion mit dem Plasmidgenom in erhöhter Virulenz oder Virulenz-unabhängiger Adaptation an bestimmte Habitate resultiert; (iii) im Kern- bzw. akzessorischen Genom unabhängig vom aufgenommenen Plasmid definierte Metabolismus-/Virulenzfunktionen, die eine erweiterte Habitatfunktion bedingen. Die Veri- bzw. Falsifizierung der Hypothesen erfolgt zunächst auf Basis von in silico-Analysen der DNA-Sequenzen von Plasmiden und Genomen dieser pandemischen ESBL-STs. Mit Hilfe eines in vivo Screenings im natürlichen Habitat Vogeldarm werden Wildtypstämme der ESBL-STs ausgewählt bei denen anschließend Kandidatengene aus den Bereichen Metabolismus und Virulenz deletiert werden. Die Auswahl dieser Kandidatengene wiederum erfolgt auf Transkriptom- (RNA-Sequencing) und Phänotyp-Ebene (phänotypischer Makroarray) sowie basierend auf der Genomanalyse und den in vivo Screenings. Abschließend werden diese Gene auf ihre in vivo-Relevanz mittels Deletionsmutanten in demselben Hühner-Infektionsmodell funktionell analysiert.
Das Projekt "Richtlinie fuer die Beurteilung von Freisetzungen genetisch veraenderter Organismen" wird vom Umweltbundesamt gefördert und von Österreichische Akademie der Wissenschaften, Institut für Technikfolgen-Abschätzung durchgeführt. Im Anhang II der EG-Richtlinie 90/220 zur Freisetzung gentechnisch veraenderter Organismen (GVO) werden die fuer eine Vorabbewertung des Versuchs geforderten Informationen aufgelistet. Dieser Katalog fuehrt in der Praxis zu verschiedenen Interpretationen, ausserdem bestehen Defizite bei der Abschaetzung oekologischer Auswirkungen und Langzeitfolgen. Die Richtlinie war bereits laut EWR-Vertrag in Oesterreich inhaltlich umzusetzen, es bleibt aber ein gewisser Spielraum in der Vorgangsweise. Als Ergebnis eines Workshops im April 1992 wurden drei Arbeitsgruppen (fuer transgene Mikroorganismen, Pflanzen und Tiere) gebildet, die einige Organismen, die fuer eine Freisetzung in Frage kommen, anhand des Anhangs II der EG-Richtlinie 90/220 untersuchten. Daneben wurden Moeglichkeiten fuer ein Monitoring, um 'seltene' und Langzeiteffekte besser abschaetzen zu koennen, und Regelungen und Empfehlungen internationaler Organisationen untersucht, um Anhaltspunkte fuer eine oesterreichische Vorgangsweise zu erhalten. Auf der Basis der Ergebnisse der Arbeitsgruppen wurden Vorschlaege fuer Mikroorganismen, Pflanzen und Tiere erstellt. Aufgrund unterschiedlicher Interpretationen der Freisetzung transgener Mikroorganismen ist es derzeit schwierig, eine einheitliche Vorgangsweise zu empfehlen. Allerdings sollten die Empfaengerorganismen umfassender beschrieben und das genetische Umfeld (Phagen und Plasmide) miteinbezogen werden. Auf die 'Vertrautheit' mit dem Organismus ist mehr Wert zu legen. Die Vorschlaege der Arbeitsgruppe fuer Pflanzen erlaubten eine Interpretation des Anhangs II zumindest fuer transgene Nutzpflanzen. Auch hier soll die Vertrautheit staerker beruecksichtigt werden. Ausserdem ist auf das jeweils neue, charakteristische staerker hinzuweisen. Sich wiederholende Angaben (etwa fuer Empfaengerorganismen) sind durch Literaturverweise zu ersetzen. Daten ueber die Umwelt sollen staerkere Beruecksichtigung finden, charakteristische Biotope in einem Kataster definiert werden. Die Datenanforderungen wurden neu gruppiert und experimentelle Freisetzungen in kleinem Rahmen von solchen in grossem Massstab schaerfer abgegrenzt. Monitoringmassnahmen sollen integraler Bestandteil der Versuchsplanung sein. Die Freisetzung grosser transgener Nutztiere wirft vor allem zuechterische Probleme auf. Die Arbeitsgruppe fuer Tiere legt daher Wert auf eine eindeutige Charakterisierung. Derartige Tiere befinden sich nicht in einem geschlossenen System, obwohl ihre Rueckholbarkeit gesichert ist, weil unbeabsichtigte Fortpflanzung nicht ausgeschlossen werden kann. Anders etwa transgene Fische oder Insekten, deren Rueckholbarkeit aeusserst fraglich ist. Es werden vier Kategorien von Tieren aufgestellt, die unterschiedliche Anforderungen an die Sicherheitsmassnahmen bei Freisetzungen stellen.
Das Projekt "Teilprojekt: Erforschung einer Quelle multiresistenter Bakterien -- Antibiotikaresistenz im Boden und seine Verknüpfung mit unterschiedlichen Landnutzungstypen und -intensitäten" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Institut für Mikrobiologie und Genetik, Abteilung Angewandte Mikrobiologie durchgeführt. Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.
Das Projekt "Vorhaben: Genomische Analysen von Einzelzellen und komplexen Umweltproben zur Identifizierung von marinen Plasmiden und ihrer Träger mit Antibiotikaresistenzgenen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für biologische Grenzflächen - Biotechnologie und Mikrobielle Genetik (IBG 5) durchgeführt. Antibiotikaresistenzgene (ARGs) sind schwerwiegende Kontaminanten auf unserer Erde und bedrohen die Gesundheit der Menschheit. ARGs werden nicht direkt durch menschliche Aktivitäten produziert, sondern entstehen als Folge der Verwendung von Antibiotika in klinischen Umgebungen und der Massentierhaltung, wodurch sie von Abwässern in Flüsse und Meere gelangen. Mittlerweile ist bekannt, dass ARGs sich durch horizontalen Gentransfer und konjugative Plasmide verbreiten können. Ihre Fähigkeit, Barrieren zwischen verschiedenen Spezies zu überwinden, ist der Schlüssel zu diesem Prozess. Jüngste Forschungserkenntnisse deuten auf Verbreitung von ARGs auch über marinen Plasmiden (MAPS) mit globaler Verbreitung und breitem Wirtsspektrum hin. Diese MAPS können ARGs über sehr große Entfernungen hinweg übertragen und über Meeresprodukte wie Fisch zurück in die menschliche Nahrungskette einschleusen. Die Genetik dieser Plasmide ist jedoch anders als die der 'klassischen Plasmide', die aus dem klinischen Umfeld bekannt sind. MAPMAR wird Metagenomik, Data Science und Einzelzellsequenzierungs-Technologien anwenden, um einen Katalog der häufigsten verbreiteten und übertragbaren MAPs zu erstellen. Durch das Testen von Methoden ihrer Übertragung wird MAPMAR außerdem Strategien zur Eindämmung des Risikos erforschen, um zu verhindern, dass Ozeane die Ausbreitung von ARGs beschleunigen.
Das Projekt "Mikrobielle Biofabriken: ZIP - Entwicklung von Zymomonas mobilis zu einem industriellen Plattform-Mikroorganismus für Produkte jenseits von Ethanol" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut Dynamik komplexer technischer Systeme durchgeführt. Das Bakterium Zymomonas mobilis ist bekannt für seine hohe Substrat (Glucose)-Aufnahmerate, niedrige Biomassenausbeute und hohe Ethanolproduktion verglichen zu anderen Modellorganismen. Aufgrund des charakteristischen 'uncoupled growth' Phänotyps wird der Großteil des Substrats in Ethanol umgewandelt und nur ein kleiner Anteil (ca. 3%) fließt in die Biomasseproduktion. Zusätzlich ist Z. mobilis tolerant gegen Ethanol, kann über einem breiten pH Bereich wachsen und hat einen GRAS (generally regarded as safe) Status. Aufgrund dieser Eigenschaften stellt Z. mobilis einen idealen Organismus für die Produktion von Stoffwechselprodukten dar. Bisherige Arbeiten zu Z. mobilis konzentrierten sich auf eine Erweiterung des Substratspektrums, sowie auf das Verständnis und die Optimierung der Ethanolproduktion. Die besonderen Eigenschaften dieses Organismus, vor allem die hohe natürliche Substrataufnahme und die niedrige Biomasseausbeute, sollten jedoch zur Produktion weiterer, industriell relevanter Chemikalien wie z.B. organische Säuren und Biotreibstoffe genutzt werden. Das ZIP Projekt zielt darauf ab, Z. mobilis zu einem weit einsetzbaren Produktionsorganismus zu entwickeln. Dazu soll zunächst ein genetischer Werkzeugkasten entwickelt werden, welcher dann für gezielte Modifikationen von Z. mobilis eingesetzt werden soll. Der Werkzeugkasten soll einen Satz von Plasmiden und Promotoren beinhalten, die eine kontrollierte Expression von Genen erlauben. Außerdem sollen Methoden für Deletionent sowie die Integration von Genen ins Chromosom entwickelt werden. Unter Verwendung dieser Tools sollen erste Stämme konstruiert werden, die als Ausgang für spätere Produktionsstämme dienen sollen. Die Arbeiten werden unterstützt durch rationelles Metabolic Engineering und Stammoptimierung basierend auf dem Einsatz verschiedener metabolischer Modellierungsansätze.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die GFZ-Fernerkundung entwickelt ein Multi-Sensorsystems zur Quantifizierung und Charakterisierung der Umweltbelastung durch Kunststoffe. Das Multi-Sensorsystem soll skalenübergreifend einsetzbar sein, so dass durch den Einsatz von Drohnen oder Flugzeugen sowohl großflächige Anwendungen zur flächenhaften Erfassung der Kunststoffverschmutzung in der Landschaft, als auch lokale Anwendungen wie die Quantifizierung von Kunststoffrückständen in Anlagen realisiert werden können. Des Weiteren soll die mikrobiologische Degradation von Kunststoffen durch die GFZ-Geomikrobiologie untersucht werden. Dazu werden Mikroorganismen identifiziert, die auf Kunststoffen wie Polyethylen wachsen, und für weitergehende Arbeiten kultiviert. Außerdem sollen Änderungen in den mikrobiellen Nahrungsnetzen untersucht werden, in denen verschiedene Kunststoffe Bodenökosystemen zugeführt werden. Um die Abbauvorgänge aufklären und verstehen zu können, werden die mikrobiellen Stoffwechselprozesse von Mikroorganismen, die beispielsweise PE als Kohlenstoffquelle nutzen können, detailliert untersucht. Unterschiedliche Messsysteme werden im Labor und im Feld getestet. Die spektrale Modellierung unterstützt die Konzeption der Messversuche, Auswahl der Sensorik und Algorithmenentwicklung zur Erkennung von Kunststoffen. Die geeignete Sensorik wird kombiniert und für den Einsatz per Drohne vorbereitet. Prozessierungsketten zur Datenverarbeitung und -integration werden aufgesetzt. Abschließend wird das Multi-Sensorsystem anhand von definierten Versuchsflächen validiert. Der mikrobiologische Abbau von Kunststoffen wird mittels mikrobiologischer und biogeochemischer Methoden untersucht. Die Arbeiten werden an belasteten und unbelasteten Bodenproben durchgeführt und beinhalten die Charakterisierung von kunststoffabbauenden Mikroorganismen, Untersuchungen zur Aufklärung der Abbauwege von Kunststoffmaterialien und den Aufbau einer Plasmid-kodierten Genbank und Genomsequenzierungen.
Das Projekt "ERA-IB7 - OBAC: Überwindung energetischer Barrieren bei der acetogenen Umsetzung von CO2" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Mikrobiologie und Biotechnologie durchgeführt. Die Einsatzmöglichkeiten der Gasfermentationstechnologie und die Verwendung von Kohlenstoffdioxid (CO2) als Rohstoff bieten umweltfreundliche Alternativen im Sinne der Wiederaufbereitung von energie- und kohlenstoffreichen Abfallgasen aus der Industrie. Die mikrobielle Fixierung und Umwandlung von CO2 in biologisch hergestellte Rohstoffe ermöglicht zudem die Reduktion des Ausstoßes von Treibhausgasen. Die besondere Gruppe der autotrophen acetogenen Bakterien betreibt einen Fermentationsprozess, der unabhängig von Licht und Sauerstoff ist. Die Energieträger, welche diese Bakterien nutzen, um CO2 zu verwerten, sind Wasserstoff oder Kohlenmonoxid oder eine Mischung aus beiden Energieträgern (Synthesegase). Das Ziel dieses Vorhabens ist die gentechnische Herstellung rekombinanter acetogener Bakterienstämme, welche derzeitige energetische Barrieren überwinden und erhöhte Wachstumsraten und Produktionsleistungen während der Gasfermentation erreichen. Diese optimierten Stämme werden anschließend für eine heterologe Acetonproduktion genutzt. Das Vorhaben ist in aufeinander aufbauende Arbeitspakete gegliedert, in denen rekombinante acetogene Bakterienstämme mittels gentechnischer Methoden hergestellt werden. Zum einen werden Stämme konstruiert, die zusätzlich auf einem Expressions-plasmid die Gene des ech-Clusters tragen. Zum anderen werden Stämme hergestellt, welche die met-Gene plasmidcodiert exprimieren. Die Durchführung der notwendigen Arbeiten erfolgt wie in der Vorhabensbeschreibung geschildert. Die verifizierten rekombinanten acetogenen Bakterienstämme werden an die Verbundpartner (1, 3 und 4) zur weiteren Bearbeitung verschickt. Die besten Stämme werden daraufhin weiter gentechnisch modifiziert und für eine heterologe Acetonproduktion optimiert. Der in der Vorhabensbeschreibung definierte Arbeitsplan sieht das Erreichen von drei Meilensteinen sowie drei Pflichtergebnissen (engl., Deliverables) vor.
Origin | Count |
---|---|
Bund | 101 |
Type | Count |
---|---|
Förderprogramm | 100 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 100 |
Language | Count |
---|---|
Deutsch | 101 |
Englisch | 21 |
Resource type | Count |
---|---|
Keine | 81 |
Webseite | 20 |
Topic | Count |
---|---|
Boden | 68 |
Lebewesen & Lebensräume | 101 |
Luft | 51 |
Mensch & Umwelt | 100 |
Wasser | 59 |
Weitere | 101 |