Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Im Vorgängerprojekt 'Mehrcyclische organische Carbonate als Vernetzer für biobasierte und formaldehydfreie Klebstoffe' CycloCarb (FNR-FKZ: 22027014) konnte im Labormaßstab aufgezeigt werden, dass sich gesundheitlich unbedenkliche mehrfunktionelle cyclische Carbonate als Vernetzer von petrochemischen und biobasierten Polymeren, vor allem von Lignin, eignen und sich neue, formaldehydfreie lignin-basierte Klebstoffe herstellen lassen. Bei ersten Verklebungstests von Holzfurnieren wurden gute Festigkeiten erzielt. Der noch zu geringen Reaktivität zwischen Lignin und den Carbonaten soll entgegengewirkt werden, indem diese in einer Zwischenstufe zu höhermolekularen Lignin-Carbonat-Präpolymeren umgesetzt werden. Im Laborversuch konnten viskose Präpolymer-Produkte erhalten werden, die über eine Vielzahl an cyclischen Carbonat-Funktionen pro Molekül verfügen, eine erhöhte Reaktivität aufweisen und mit etlichen weiteren potentiellen Reaktionspartnern wie Tanninen, Kohlenhydraten und Proteinen, aber auch mit konventionellen Klebharzkomponenten kompatibel sind. Ein Schwerpunkt der Projektarbeiten besteht in der Entwicklung von Präpolymeren aus Pflanzenölcarbonaten, konventionellen Carbonaten und Lignin bis in den Technikumsmaßstab. Pflanzenölcarbonate werden zusammen mit dem Projektpartner HOBUM Oleochemicals GmbH unter Verwendung neuer Katalysatoren entwickelt und am Thünen-Institut für Holzforschung mit Lignin zu Präpolymeren verarbeitet. Produktcharakterisierung, Klebstoffformulierung, Upscaling und Verklebungstests werden vom Thünen-Institut für Holzforschung und Prefere Resins Germany GmbH durchgeführt. Die Präpolymere werden schließlich im Kilogrammmaßstab erzeugt, um Holzwerkstoffe, faserbasierte Materialien und Mineralstoffe verkleben und anwendungsorientiert prüfen zu können.
Ziel des Teilvorhabens ist die Synthese neuer funktionaler Polymere mit antimikrobiellen Eigenschaften. Die Funktion soll chemisch angebunden werden, um ein Auswaschen zu vermeiden und eine dauerhafte Wirkung zu erzielen. Die Polymere sind in wasserdispergierbar und dienen als Bindemittel in einer Formulierung einer Holzbeschichtung für die Anwendung in Gebäuden des Gesundheitsschutzes. Darüber hinaus werden Naturstoffe mit antimikrobieller Wirkung in Formulierungen untersucht.
Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen und Paraffinen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten sowie als Verarbeitungshilfsmittel bei Polymeren getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.
In MemKoWI ist geplant, Membranverfahren für die Abtrennung von CO2 und H2 in Industrien zu untersuchen, in denen sie bisher nicht etabliert sind. Das Potenzial, dass sie sich hier als skalierbare und durch die Möglichkeiten verschiedene keramische und polymere Membranmaterialien zu innovativen Kombinationen Lösungen zu verschalten, flexible und anpassbare Technologie, erweist ist sehr groß. Allerdings ist ebenfalls mit erheblichen Risiken zu rechnen. Im Vergleich zu den bisher untersuchten Einsätzen von Membranverfahren zur CO2-Abtrennung aus Kohlekraftwerksrauchgasen, zeichnen sich die in MemKoWI adressierten Gase durch andere Zusammensetzungen aus. Somit kann die Einsetzbarkeit der Verfahren zwar durch Berechnungen abgeschätzt, deren stabiler Einsatz aber nur im Versuch im Betriebsumfeld nachgewiesen werden. Potenzielle Anwender können so von den Vorteilen der Membranverfahren überzeugt werden. In MemKoWI ist der Einsatz von drei Testanlagen geplant. Eine der Anlagen ist bereits vorhanden und soll modifiziert werden, während die beiden anderen Anlagen neu zu bauen sind. Die hiermit verbundenen Kosten sind weder aus der Grundfinanzierung der beteiligten Forschungsinstitutionen noch aus den F&E-Budgets der beteiligten Unternehmen zu finanzieren. Weiterhin stellt die Einbindung der Anlagen in Industriestandorte einen erheblichen, anderweitig nicht finanzierbaren Aufwand dar. Die für die Membranherstellung verwendeten Rohmaterialien müssen in hinreichender Menge beschafft, verarbeitet und in Membranmodule verbaut werden. Auch die Ausgaben hierfür übersteigen die F&E-Budgets. Das für die Durchführung der geplanten Arbeiten notwendige Personal kann nur zum Teil aus der Grundfinanzierung gestellt werden. Projektpersonal muss, gerade auch im Hinblick auf die Erstellung wissenschaftlicher Arbeiten, eingestellt werden und der Personalaufwand für die Betreuung der Testanlagen abgedeckt werden.
Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen und Paraffinen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten sowie als Verarbeitungshilfsmittel bei Polymeren getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.
Das im Rahmen eines mit Phenel als Aufschlussmittel betriebenen Holzaufschlusses anfallende Phenollignin ist gegenueber anderen technischen Ligninen weniger kondensiert und reaktionsfaehiger. Eine Verwertung ist denkbar durch Umsatz mit Diisocyanaten zu Polyurethanen oder auch durch Umsatz mit Epoxiden. Im Rahmen des Programms werden Phenollignine charakterisiert und ihre Reaktivitaet geprueft.
Origin | Count |
---|---|
Bund | 2129 |
Type | Count |
---|---|
Förderprogramm | 2121 |
Text | 1 |
unbekannt | 7 |
License | Count |
---|---|
geschlossen | 8 |
offen | 2121 |
Language | Count |
---|---|
Deutsch | 2009 |
Englisch | 229 |
Resource type | Count |
---|---|
Keine | 1250 |
Webseite | 879 |
Topic | Count |
---|---|
Boden | 1233 |
Lebewesen und Lebensräume | 1149 |
Luft | 958 |
Mensch und Umwelt | 2129 |
Wasser | 715 |
Weitere | 2036 |