API src

Found 190 results.

Pilzliche Schaderreger: Pseudomonas

Seit einigen Jahren gibt es in Deutschland ein neues Krankheitsbild an Rosskastanien, das innerhalb weniger Jahre zum Absterben befallener Bäume führen kann bzw. diese aus Gründen der Verkehrssicherheit gefällt werden müssen. Maßgeblich beteiligt an diesem Krankheitsbild ist das Bakterium Pseudomonas syringae pv. aesculi . Das ursprünglich erstmals in Indien an Aesculus indica nachgewiesene Bakterium tritt an vielen bei uns vorkommenden Aesculus -Arten auf. An der indischen Kastanie tritt der Erreger lediglich als Blattfleckenerreger in Erscheinung. Bei den in unseren Breiten häufig eingesetzten Kastanienarten ( Aesculus hippocastanum, Aesculus x carnea ) sind die Auswirkungen deutlich massiver. Zunächst führt der Befall zu einem Absterben der Rinde. In der Folge treten innerhalb kurzer Zeit häufig holzzersetzende Pilze an den befallenen Bäumen auf. Diese sind offenbar in der Lage einen raschen Holzabbau durchzuführen, wodurch die Verkehrssicherheit beeinträchtigt wird. In diesem Zusammenhang wird nach gegenwärtigem Kenntnisstand vermutet, dass das Bakterium als Primärschädling aktiv ist und hierdurch die natürlichen Abwehrreaktionen des Baumes maßgeblich beeinträchtigt wird. In Europa trat das neue Krankheitsbild zunächst in England und den Niederlanden in Erscheinung und hat sich mittlerweile in weiten Teilen Mitteleuropas ausgebreitet. Erstmalig wurde das Bakterium 2007 an Rosskastanien in Deutschland nachgewiesen und hat seitdem vorwiegend in Nordwestdeutschland für starke Schädigungen an Kastanien geführt.

Pool water disinfection by ozone-bromine treatment: Assessing the disinfectant efficacy and the occurrence and in vitro toxicity of brominated disinfection by-products

Pool water is continuously circulated and reused after an extensive treatment including disinfection by chlorination, ozonation or UV treatment. In Germany, these methods are regulated by DIN standard 19643. Recently, the DIN standard has been extended by a new disinfection method using hypobromous acid as disinfectant formed by introducing ozone into water with naturally or artificially high bromide content during water treatment. In this study, we tested the disinfection efficacy of the ozone-bromine treatment in comparison to hypochlorous acid in a flow-through test rig using the bacterial indicator strains Escherichia coli, Enterococcus faecium, Pseudomonas aeruginosa, and Staphylococcus aureus and the viral indicators phage MS2 and phage PRD1. Furthermore, the formation of disinfection by-products and their potential toxic effects were investigated in eight pool water samples using different disinfection methods including the ozone-bromine treatment. Our results show that the efficacy of hypobromous acid, depending on its concentration and the tested organism, is comparable to that of hypochlorous acid. Hypobromous acid was effective against five of six tested indicator organisms. However, using Pseudomonas aeruginosa and drinking water as test water, both tested disinfectants (0.6 mg L-1 as Cl2 hypobromous acid as well as 0.3 mg L-1 as Cl2 hypochlorous acid) did not achieve a reduction of four log10 levels within 30 s, as required by DIN 19643. The formation of brominated disinfection by-products depends primarily on the bromide concentration of the filling water, with the treatment method having a smaller effect. The eight pool water samples did not show critical values in vitro for acute cytotoxicity or genotoxicity in the applied assays. In real pool water samples, the acute toxicological potential was not higher than for conventional disinfection methods. However, for a final assessment of toxicity, all single substance toxicities of known DBPs present in pool water treated by the ozone-bromine treatment have to be analyzed additionally. © 2021 The Authors

Manganese-oxidizing bacteria isolated from natural and technical systems remove cylindrospermopsin

The cyanotoxin cylindrospermopsin was discovered during a drinking water-related outbreak of human poisoning in 1979. Knowledge about the degradation of cylindrospermopsin in waterbodies is limited. So far, only few cylindrospermopsin-removing bacteria have been described. Manganese-oxidizing bacteria remove a variety of organic compounds. However, this has not been assessed for cyanotoxins yet. We investigated cylindrospermopsin removal by manganese-oxidizing bacteria, isolated from natural and technical systems. Cylindrospermopsin removal was evaluated under different conditions. We analysed the correlation between the amount of oxidized manganese and the cylindrospermopsin removal, as well as the removal of cylindrospermopsin by sterile biogenic oxides. Removal rates in the range of 0.4-37.0(my)L-1 day-1 were observed. When MnCO3 was in the media Pseudomonas sp. OF001 removed round about 100% of cylindrospermopsin in 3 days, Comamonadaceae bacterium A210 removed round about 100% within 14 days, and Ideonella sp. A288 and A226 removed 65% and 80% within 28 days, respectively. In the absence of Mn2+, strain A288 did not remove cylindrospermopsin, while the other strains removed 5-16%. The amount of manganese oxidized by the strains during the experiment did not correlate with the amount of cylindrospermopsin removed. However, the mere oxidation of Mn2+ was indispensable for cylindrospermopsin removal. Cylindrospermopsin removal ranging from 0 to 24% by sterile biogenic oxides was observed. Considering the efficient removal of cylindrospermopsin by the tested strains, manganese-oxidizing bacteria might play an important role in cylindrospermopsin removal in the environment. Besides, manganese-oxidizing bacteria could be promising candidates for biotechnological applications for cylindrospermopsin removal in water treatment plants. © 2019 Elsevier Ltd.

Catch me if you can

To cope with heterogeneous environments and resource distributions, filamentous fungi have evolved a spatially extensive growth enabling their hyphae to penetrate airŃwater interfaces and pass through air-filled pores. Such mycelia are also known to act as dispersal networks for the mobilisation of bacteria (ĺfungal highways̷) and connection of microbial microhabitats. Hitherto, however, nothing is known about the effect of mycelia-based dispersal on interactions between bacterial predators and their prey and concomitant effects on biomass formation. We here hypothesise that mycelia enable the contact between predators and their prey and shape a prey̷s population. We investigated the impact of predation by Bdellovibrio bacteriovorus 109J on the growth of its potential prey Pseudomonas fluorescens LP6a in the presence of mycelia. Our data give evidence that hyphae increase the accessibility of the prey to B. bacteriovorus 109J and, hence, allow for efficient foraging and shaping of prey populations not seen in the absence of mycelia. To test our hypothesis tailored microbial landscapes were used for better reduction of emerging properties in complex systems. Our data suggest that mycelia have substantial influence on preyŃpredator relationship and hereby may promote the structure of prey and predator populations and, hence, may be a determinant for biomass formation in heterogeneous environments. Quelle: https://www.nature.com/

GS 36 - Abschätzung und Beurteilung der mikrobiellen Mobilisierung chemischer Elemente im Endlager Grube Konrad (PDF, nicht barrierefrei)

März 199 0 Abschätzung und Beurte~lung der mikro~iellen Mobilisierung chemischer Elemente im Endlager Grube Konrad Inhaltsverzeichnis: 1. Einleitung 2, Kurzbeschreibung der relevanten Bakterien 2.1 Sulfat- und Schwefel~ reduziere~de Bakte~ien 2:1~1 Sulfat- reduzierende Bakterien Desulfovibri6 Desulfonema Desulfobacter Desulfobulbus Desulfosarcina Desulfotomaculum Desulfomonas Desulfococcus Desulfobacterium Thermodesulfobacterium 2.1 . 2 Schwefel- reduzierende Bakterien Desulfuromonas 2 . 2 Schwefel- ox i dierende Bakterien Thiobaci1lus Thiomicrospira Thiosphaera Acid.iphilium Thiobacterium Macromonas Thermo.thr'ix Thiobacilltis Q Sulfobacillus 2 . 3 Nitrat- reduzierende Bakterien Paracoccus Pseudomonas Moraxella Neisseria Flavobacterium Corynebacterium Wolinells. Campylobacter, Vibrio Citrobacter Klebsiella Azotobacter Azomonas Veill o nella Clostridium Bacillus Seite: 2 12 14 15 16 17 20 20 21 24 25 27 39 43 44 45 46 46 47 48 49 50 52 52 52 53 53 53 55 55 56 56 .57 57 58 58 Escherichia59 Selenomonas Propionibacte~ium Bradyrhizobium60 Salmonella Staphylococcus 59 60 61 61 2.4 Eis en- und Mangan- oxidierende Bakterien Siderocapsa Naumanni'e lla Siderococcus Ochrobium Gallionella Sphaerotilus Leptothrix Metallogenium Hyphomicrobium Leptospirillum Pseudomonas Thiobacillus 2. 5 Eisen- und Mangan- reduzierende Bakterien Bac teroides Clo stridium Bacillus Mycobacterium Agrobacterium Aquaspirillum Enterobacter Micrococcus Serratia Bacillus 2 . 6 Methanogene Bakterien Methanoba cterium Methanobrevibacter Methanothermus Methanococcus Methanomicrob i um Metha.nospirillum 1-iethanogenium Methanosarcina Methanolobus Methanothrix Methanococcoides Methartoplanus Methanosphaera Me t hanoco rpus c u lum Methanohalophilus 2 . 7 Re stliche Archaebakterien Archaeoglobus Thermoplasma Th.e rmoco ccus Pyrococcus Thermoproteus Thermofilum Desulfurococcus Staphylothermus Pyrodictium Sulfolobus Acidianus Desulfurolobus Pyrobaculum NS-C 62 64 66 66 67 67 68 69 70 71 72 73 74 '7 „ ( "i' 74 75 75 76 76 77 77 79 80 85 87 88 92 93 94 97 100 101 1 02 103 104 104' 106 107 108 109 110 111 111 112 112 113 113 114 115 115 116

Mikrobiologie

Die Methoden und Verfahren der klassischen kulturellen Mikrobiologie bilden das Fundament der Umweltmikrobiologie im LANUV. Die Kultivierung von Mikroorganismen auf festen Agar-Nährmedien in Petrischalen oder in Flüssigkulturen sind Grundvoraussetzungen, um unterschiedliche Mikroorganismen aus der aquatischen Umwelt nachweisen, isolieren und weitergehend charakterisieren zu können. Die hierfür notwendigen analytischen Werkzeuge werden kontinuierlich auf dem aktuellen Stand gehalten und bei Ausbruchsgeschehen, zur amtlichen Überwachung und für Projektarbeiten eingesetzt. Foto: LANUV/D. Krauthausen Foto: LANUV/D. Krauthausen Foto: KNSY Photography Im Fokus steht neben der Analytik rund um Legionellen der zusätzliche Ausbau der Fachkompetenz bezüglich anderer hygienerelevanter Mikroorganismen aus der aquatischen Umwelt. Hierbei sind die Mikroorganismen von Interesse, die bereits jetzt ein mögliches Problem in der Umwelt darstellen oder solche, die zu den sogenannten „ emerging pathogens “ zählen. Bei den „ emerging pathogens “ handelt es sich um neue oder neu auftretende Krankheiten verursachende Mikroorganismen mit zunehmender Ausbreitung, Virulenz oder Resistenz. In Zusammenarbeit mit Kooperationspartnern wie dem Umweltbundesamt (UBA), dem Nationalen Referenzzentrum für gramnegative Krankenhauserreger (NRZ) oder dem Robert-Koch-Institut (RKI) wird das vorhandene Fachwissen erweitert und ausgetauscht. Die Erkenntnisse fließen unter anderem in DIN-, ISO-, VDI- und UBA-Arbeitskreise ein und unterstützen im Rahmen von NRW-geförderten Forschungsprojekten die Entwicklung und Validierung neuer Analysemethoden. Unser Ziel: Qualitätsgesicherte, reproduzierbare und vergleichbare Ergebnisse bei der Analyse von herausfordernden komplexen Umweltmatrices in und für NRW. Unser erarbeitetes Fachwissen wird dauerhaft in Form von Arbeitsblättern und selbst konzipierten Seminaren (siehe NEWS ) am Bildungszentrum für die Ver- und Entsorgungswirtschaft (BEW) oder am LANUV-Standort Duisburg an andere Labore, interessierte Kreise und Behörden vermittelt. Unser Ziel ist es, den im LANUV erzielten Wissensmehrwert an Interessierte weiterzugeben. Die Herstellung von mikrobiologischen Prüfgegenständen und die fachliche Bewertung der Teilnehmerergebnisse der seit 2017 fortlaufend angebotenen mikrobiologischen LANUV-Eignungsprüfungen (Ringversuche) runden das Portfolio der Mikrobiologie im LANUV ab. Nachweis von Legionellen Umweltproben können verschiedene anspruchsvolle Herausforderungen an die mikrobiologische Analytik stellen. Neben der Fragestellung zur Homogenität der Proben ist insbesondere der Einfluss interferierender Mikroorganismen (Begleitflora) auf den Nachweis von Legionellen sowie das sichere Differenzieren zwischen Legionellen-verdächtiger und Legionellen-ähnlicher Koloniemorphologie von Bedeutung. Die Untersuchungsmethode der Wahl ist die kulturelle Analytik entsprechend DIN EN ISO 11731:2019-03. Diese Norm ist die Grundlage für reproduzierbare und vergleichbare Ergebnisse. Die speziellen Herausforderungen bei der Untersuchung von Umweltproben stellen dabei einen deutlichen Unterschied zur Trinkwasseranalytik dar. Zur Harmonisierung der kulturellen Legionellenanalytik in Oberflächen- und Abwasser flossen die langjährigen Erfahrungen des LANUV in das Arbeitsblatt 44 ein. Das Arbeitsblatt dient dem Ziel einer einheitlichen Probenahme, Analytik, Auswertung und Ergebnisangabe. In den Anwendungsbereich der Empfehlung fallen dabei sämtliche Oberflächenwässer und Abwässer bzw. wässrige Proben aus dem Bereich Abwasserableitung und Abwasserbehandlung. Eine Empfehlung für die Probenahme und den Nachweis von Legionellen in Verdunstungskühlanlagen, Kühltürmen und Nassabscheidern stellt das Umweltbundesamt zur Verfügung. Neben dem Kulturverfahren finden sowohl Immunoseparationsverfahren als auch molekularbiologische Verfahren , wie die quantitative Polymerase-Kettenreaktion (qPCR), Anwendung. Das molekularbiologische qPCR-Verfahren für den Nachweis von Legionella spp. und Legionella pneumophila in komplexen Umweltmatrices ist seit 2019 nach DIN EN ISO 17025 akkreditiert. Mit diesen Methoden können innerhalb eines Tages Aussagen über das Vorkommen von Legionellen in Umweltmatrices erhalten werden. Foto: LANUV/D. Krauthausen Fotos: LANUV/D. Krauthausen Foto: LANUV/S. Grobe Fotos: LANUV/M. Niggemann Nachweis klinisch relevanter antibiotikaresistenter Bakterien Da wässrige Umweltproben immer ein gewisses Maß an Heterogenität bezüglich der nachzuweisenden Mikroorganismen aufweisen, stellt die Analytik von wasserbürtigen Bakterien - und dementsprechend auch von antibiotikaresistenten Bakterien - eine Herausforderung dar. Daher ist nicht nur die Auswahl der zu verwendenden kulturellen Methoden, sondern auch eine sachgerechte und valide Homogenisierung der Proben eine wichtige Grundlage zur Erhebung reproduzierbarer und statistisch gesicherter quantitativer Ergebnisse. Im LANUV werden Oberflächengewässer-, Badegewässer-, Abwasser- und Biofilmproben unter Verwendung von selektiven chromogenen Agar-Nährmedien auf antibiotikaresistente Bakterien untersucht. Im Fokus stehen neben den V ancomycin- R esistenten E nterokokken(VRE) insbesondere Enterobakterien mit bestätigtem Nachweis von E xtended S pectrum β - L actamasen (ESBL) und C arbapenemase- P roduzierende E nterobakterien (CPE). Zusätzlich zu der Identifizierung und Charakterisierung dieser Bakterien enthält unser Portfolio den Nachweis Carbapenemase-produzierender Acinetobacter baumannii sowie Pseudomonas aeruginosa. Neben der sicheren Identifizierung der Bakteriengattung bzw. -art mittels MALDI-TOF MS und/oder stoffwechselphysiologischer Kenndaten erfolgt der Nachweis von Resistenzen und Resistenzmechanismen mit Verfahren zur Bestimmung des Phänotyps und des Genotyps. Seit 2024 stehen uns zusätzlich die Methoden der Typisierung und die Überprüfung von bakteriellen Verwandtschaftsverhältnissen unter Verwendung des Next-Generation Sequencing (NGS ) zur Verfügung. Eine umfangreiche methodische Darstellung kann dem LANUV-Fachbericht 155 "Klinisch-relevante antibiotikaresistente Bakterien in Abwasser und Fließgewässern in NRW" entnommen werden. Zusätzlich stellt das LANUV ein Glossar mit wichtigen Begriffen zum Thema „Antibiotikaresistenzen" zur Verfügung. Foto: KNSY Photography Foto: LANUV/D. Krauthausen Foto: LANUV/D. Krauthausen Foto: LANUV/D. Krauthausen Bakterienidentifizierung mittels MALDI-TOF MS Eine sehr schnelle Identifizierungsmethode für Mikroorganismen stellt die MALDI-TOF MS ( M atrix A ssisted L aser D esorption I onization- T ime O f F light M ass S pectrometry) dar. Das Verfahren erlaubt eine Identifizierung von Bakterien anhand ihrer Biomoleküle, meist anhand von ribosomalen Proteinen. Durch das Verfahren werden molekulare Fingerabdrücke (Proteinfingerprints) erzeugt und zur Identifizierung mit Referenzspektren abgeglichen. Das LANUV ist durch den Einsatz des MALDI-TOF-Gerätes in der Lage, Reinkulturen innerhalb weniger Minuten bis auf Art-Ebene zu identifizieren. Eingesetzt wird das MALDI-TOF MS insbesondere bei der Identifizierung von Enterobakterien, Enterokokken, Pseudomonaden, Acinetobacter, Vibrionen, Francisellen und natürlich auch Legionellen. Dies bietet insbesondere in Ausbruchsfällen ein schnelles diagnostisches Hilfsmittel und stellt ein notwendiges Instrument der Spezies-Identifizierung antibiotikaresistenter Bakterien dar. Foto: LANUV/D. Krauthausen Foto: LANUV/D. Krauthausen Umweltproben können verschiedene anspruchsvolle Herausforderungen an die mikrobiologische Analytik stellen. Neben der Fragestellung zur Homogenität der Proben ist insbesondere der Einfluss interferierender Mikroorganismen (Begleitflora) auf den Nachweis von Legionellen sowie das sichere Differenzieren zwischen Legionellen-verdächtiger und Legionellen-ähnlicher Koloniemorphologie von Bedeutung. Die Untersuchungsmethode der Wahl ist die kulturelle Analytik entsprechend DIN EN ISO 11731:2019-03. Diese Norm ist die Grundlage für reproduzierbare und vergleichbare Ergebnisse. Die speziellen Herausforderungen bei der Untersuchung von Umweltproben stellen dabei einen deutlichen Unterschied zur Trinkwasseranalytik dar. Zur Harmonisierung der kulturellen Legionellenanalytik in Oberflächen- und Abwasser flossen die langjährigen Erfahrungen des LANUV in das Arbeitsblatt 44 ein. Das Arbeitsblatt dient dem Ziel einer einheitlichen Probenahme, Analytik, Auswertung und Ergebnisangabe. In den Anwendungsbereich der Empfehlung fallen dabei sämtliche Oberflächenwässer und Abwässer bzw. wässrige Proben aus dem Bereich Abwasserableitung und Abwasserbehandlung. Eine Empfehlung für die Probenahme und den Nachweis von Legionellen in Verdunstungskühlanlagen, Kühltürmen und Nassabscheidern stellt das Umweltbundesamt zur Verfügung. Neben dem Kulturverfahren finden sowohl Immunoseparationsverfahren als auch molekularbiologische Verfahren , wie die quantitative Polymerase-Kettenreaktion (qPCR), Anwendung. Das molekularbiologische qPCR-Verfahren für den Nachweis von Legionella spp. und Legionella pneumophila in komplexen Umweltmatrices ist seit 2019 nach DIN EN ISO 17025 akkreditiert. Mit diesen Methoden können innerhalb eines Tages Aussagen über das Vorkommen von Legionellen in Umweltmatrices erhalten werden. Da wässrige Umweltproben immer ein gewisses Maß an Heterogenität bezüglich der nachzuweisenden Mikroorganismen aufweisen, stellt die Analytik von wasserbürtigen Bakterien - und dementsprechend auch von antibiotikaresistenten Bakterien - eine Herausforderung dar. Daher ist nicht nur die Auswahl der zu verwendenden kulturellen Methoden, sondern auch eine sachgerechte und valide Homogenisierung der Proben eine wichtige Grundlage zur Erhebung reproduzierbarer und statistisch gesicherter quantitativer Ergebnisse. Im LANUV werden Oberflächengewässer-, Badegewässer-, Abwasser- und Biofilmproben unter Verwendung von selektiven chromogenen Agar-Nährmedien auf antibiotikaresistente Bakterien untersucht. Im Fokus stehen neben den V ancomycin- R esistenten E nterokokken(VRE) insbesondere Enterobakterien mit bestätigtem Nachweis von E xtended S pectrum β - L actamasen (ESBL) und C arbapenemase- P roduzierende E nterobakterien (CPE). Zusätzlich zu der Identifizierung und Charakterisierung dieser Bakterien enthält unser Portfolio den Nachweis Carbapenemase-produzierender Acinetobacter baumannii sowie Pseudomonas aeruginosa. Neben der sicheren Identifizierung der Bakteriengattung bzw. -art mittels MALDI-TOF MS und/oder stoffwechselphysiologischer Kenndaten erfolgt der Nachweis von Resistenzen und Resistenzmechanismen mit Verfahren zur Bestimmung des Phänotyps und des Genotyps. Seit 2024 stehen uns zusätzlich die Methoden der Typisierung und die Überprüfung von bakteriellen Verwandtschaftsverhältnissen unter Verwendung des Next-Generation Sequencing (NGS ) zur Verfügung. Eine umfangreiche methodische Darstellung kann dem LANUV-Fachbericht 155 "Klinisch-relevante antibiotikaresistente Bakterien in Abwasser und Fließgewässern in NRW" entnommen werden. Zusätzlich stellt das LANUV ein Glossar mit wichtigen Begriffen zum Thema „Antibiotikaresistenzen" zur Verfügung. Eine sehr schnelle Identifizierungsmethode für Mikroorganismen stellt die MALDI-TOF MS ( M atrix A ssisted L aser D esorption I onization- T ime O f F light M ass S pectrometry) dar. Das Verfahren erlaubt eine Identifizierung von Bakterien anhand ihrer Biomoleküle, meist anhand von ribosomalen Proteinen. Durch das Verfahren werden molekulare Fingerabdrücke (Proteinfingerprints) erzeugt und zur Identifizierung mit Referenzspektren abgeglichen. Das LANUV ist durch den Einsatz des MALDI-TOF-Gerätes in der Lage, Reinkulturen innerhalb weniger Minuten bis auf Art-Ebene zu identifizieren. Eingesetzt wird das MALDI-TOF MS insbesondere bei der Identifizierung von Enterobakterien, Enterokokken, Pseudomonaden, Acinetobacter, Vibrionen, Francisellen und natürlich auch Legionellen. Dies bietet insbesondere in Ausbruchsfällen ein schnelles diagnostisches Hilfsmittel und stellt ein notwendiges Instrument der Spezies-Identifizierung antibiotikaresistenter Bakterien dar.

Informationen zur chemischen Verbindung: Pseudomonas chlororaphis, Stamm MA342

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Pseudomonas chlororaphis, Stamm MA342. Stoffart: Stoffklasse.

Informationen zur chemischen Verbindung: Burkholderia pseudomallei (Pseudomonas pseudomallei)

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Burkholderia pseudomallei (Pseudomonas pseudomallei). Stoffart: Stoffklasse.

Informationen zur chemischen Verbindung: PSEUDOMONAS AEROGINOSA CULTURE CONDITIONED MEDIA EXTRACT

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung PSEUDOMONAS AEROGINOSA CULTURE CONDITIONED MEDIA EXTRACT. Stoffart: Stoffklasse.

Informationen zur chemischen Verbindung: PSEUDOMONAS GUGUANENSIS EXTRACT

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung PSEUDOMONAS GUGUANENSIS EXTRACT. Stoffart: Stoffklasse.

1 2 3 4 517 18 19