API src

Found 93 results.

Erarbeitung einer röntgendensitometrisch multivariaten Analysenmethode für die Datierung von Holz der Baumart Fichte (Picea abies (L.) Karst.)

Das Projekt "Erarbeitung einer röntgendensitometrisch multivariaten Analysenmethode für die Datierung von Holz der Baumart Fichte (Picea abies (L.) Karst.)" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung durchgeführt. An historisch wertvollen Gebäuden und Denkmälern sind häufig dendrochronologische Altersbestimmungen an hölzernen Baugruppen notwendig, um eine exakte zeitliche Einordnung und fachgerechte Sanierung zu ermöglichen. Grundlage der herkömmlichen dendrochronologischen Datierung sind Messreihen der Jahrringbreite. Mit diesem holzanatomischen Merkmal können in der Regel bisher nur Proben mit mehr als 50 Jahrringen zeitlich exakt eingeordnet werden. Wichtige Informationen zu kleineren Objekten können somit der Erforschung der Kunst- und Siedlungsgeschichte verloren gehen. In diesem Forschungsvorhaben soll deshalb am Lehrstuhl Forstnutzung der TU Dresden in Tharandt insbesondere in Zusammenarbeit mit der Eidgenössischen Forschungsanstalt Birmensdorf, dem Landesamt für Denkmalpflege Sachsen, der Bundesforschungsanstalt für Forst- und Holzwirtschaft Hamburg und dem DAI Berlin eine röntgendensitometrische Datierungsmethode entwickelt werden, die auf der Grundlage einer multivariate Zeitreihenanalyse jahrringärmerer Holzstücke der Bauforschung und Archäologie neue Daten zur Verfügung stellen kann. Die Methode basiert auf einer multivariaten Analyse röntgendensitometrischer Daten von Rohdichteprofilen. Die Datierung von Fichtenholzproben mit einer multivariaten Standardkurve, bestehend aus Zeitreihen verschiedener Rohdichtemerkmale, als neue wissenschaftliche Methode würde durch die komplexe Erfassung der intraannuellen Xylemcharakteristika eine effizientere dendrochronologische Auswertung ermöglichen.

Teilvorhaben: Mikrostrukturelle und mechanische Charakterisierung von Hochtemperatur-Elektrolyseurzellen im Neuzustand und nach Betrieb unter Volllast (HTEL_durability)

Das Projekt "Teilvorhaben: Mikrostrukturelle und mechanische Charakterisierung von Hochtemperatur-Elektrolyseurzellen im Neuzustand und nach Betrieb unter Volllast (HTEL_durability)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Institut für Materialforschung (IMA), Lehrstuhl Keramische Werkstoffe durchgeführt. Die Hochtemperaturelektrolyse zeichnet sich im Vergleich zu anderen Elektrolysetechnologien durch einen hohen Wirkungsgrad und niedrige Betriebskosten aus. Daher stellt diese Technologie einen vielversprechenden Ansatz zur Erzeugung von Grünem Wasserstoff dar. Kernelement zur Produktion von grünem H2 mithilfe der HTEL sind HTEL-Zellen und HTEL-Stacks. Diese stellen einen Schlüssel für die großwirtschaftliche und kosteneffiziente Herstellung von grünem H2 bei hoher Grundlast dar. Um den H2-Markt mit großskaligen HTEL-Zellen und -Stacks bedienen zu können, bedarf es weiterer Entwicklungsschritte hinsichtlich Lebensdauer, Materialkosten, Effizienz, Fertigungstechnologien sowie Produktionshochskalierung. Das Verbundvorhaben adressiert den Entwicklungs- und Forschungsschwerpunkt genau auf diese Themen und trägt damit einen entscheidenden Beitrag zur Realisierung der Ziele der Nationalen Wasserstoffstrategie und somit zur Hochskalierung der Elektrolysetechnologie in den MW-Maßstab bei. In HTEL-STACKS übernimmt Sunfire die Gesamtkoordination und bearbeitet gemeinsam mit Unternehmen aus der Industrie und Forschung Fragestellungen zur Industrialisierung der HTEL-Zellen und -Stacks. Der Lehrstuhl Keramische Werkstoffe (Universität Bayreuth) ist für die Charakterisierung von neuen sowie betriebenen Elektrolyseurzellen hinsichtlich Mikrostruktur sowie der Prüfung und Untersuchung der thermomechanischen Eigenschaften mit Fokus auf die Festigkeit (bis 850 Grad Celsius) zuständig. Als Methoden werden neben Licht- und Rasterelektronenmikroskopie Röntgenbeugung und IR-Spektroskopie zur Untersuchung der Mikrostrukturen eingesetzt. Die mechanischen Kennwerte werden durch Doppelring-Biegeversuche sowie Zugversuche ermittelt. Ziel des Teilvorhabens ist die Korrelation der Mikrostrukturen mit den thermomechanischen Eigenschaften, insbesondere hinsichtlich der Alterungsmechanismen. Zudem soll die Mikrostrukturanalyse computerunterstützt durchgeführt werden.

Entwicklung und Charakterisierung von oxidischen Katalysatoren zur Reduktion von Stickoxiden in Industrieabgasen

Das Projekt "Entwicklung und Charakterisierung von oxidischen Katalysatoren zur Reduktion von Stickoxiden in Industrieabgasen" wird vom Umweltbundesamt gefördert und von Universität München, Institut für Physikalische Chemie durchgeführt. Es soll die Funktionsweise von Katalysatoren zur Stickoxidreduktion auf Spinellbasis (Cu, Ni) verstanden werden, und durch geeignete Modifikation sollen Aktivitaet und Lebensdauer, auch Resistenz gegen Schwefelverbindungen, verbessert werden. Dazu werden Strukturuntersuchungen an frischen und gebrauchten Katalysatoren (Roentgenbeugung, ESCA, UV-VIS-Spektren, ESR) durchgefuehrt und ergaenzt durch das Studium von Chemiesorptionsvorgaengen (IR-Spektroskopie, temp. programmierte Desorption und Reduktion). Schliesslich werden Katalysatortests unter Standardbedingungen gefahren.

Teilvorhaben: Materialwissenschaftliche Charakterisierung

Das Projekt "Teilvorhaben: Materialwissenschaftliche Charakterisierung" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Elektronik und der Energietechnologie (WW6) durchgeführt. Das Verbundvorhaben befasst sich mit der gezielten Verbesserung der Ertragsparameter bei der CIGS Absorberbildung mittels industrierelevanter Prozesse. Untersucht wird die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit und Defektdichte im Halbleiter und an den Grenzflächen und die Wechselwirkungen des Absorbers mit den weiteren Schichten. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Im Teilvorhaben der FAU erfolgt die materialwissenschaftliche Charakterisierung der Bauteile. Beteiligt sind der Lehrstuhl für Kristallographie und Strukturphysik (Prof. Hock) und das Kristallzüchtungslabor am Department Werkstoffwissenschaften 6 (Prof. Wellmann). An beiden Institutionen erfolgt eine umfassende Charakterisierung von der Oberseite der Absorber (mit und ohne Pufferschichten), von der Unterseite der vom Rückkontakt abgelösten Absorber und an der Oberseite des freigelegten Rückkontaktes. Der Querschnitt der Absorber ist in der Rasterelektronenmikrokopie zugänglich. Alle Ergebnisse der Charakterisierung werden den Prozessparametern bei der Schichtherstellung und den Ertragsparametern zugeordnet. Bei der Charakterisierung mittels Rasterelektronenmikroskopie (REM) werden der Schichtaufbau der Solarzelle, das mikrokristalline Gefüge des Absorbers und des Rückkontaktes, die Grenzfläche zwischen ihnen und die Oberflächenrauigkeit und Poren erfasst. Die im REM integrierten Detektoren für energiedispersive Röntgenfluoreszenzanalyse (EDX) und Kathodolumineszenz erlauben es, die chemische Zusammensetzung des Absorbers tiefenabhängig (Gradienten der Bandlücke) und über die Fläche (Inhomogenitäten der Bandlücke) qualitativ und quantitativ zu bestimmen und Fremdphasen zu erkennen. Räumlich und spektral aufgelöste Photolumineszenzmessungen dienen der Bestimmung der Bandlücke und ergänzen die EDX-Messungen. Neben den Eigenschaften von Absorber und Rückkontakt werden auch die Bereiche nahe den P1 Laserlinien auf Veränderungen und Beschädigungen untersucht. Die kristallografisch-strukturellen Eigenschaften der Schichten werden mittels Röntgenbeugungsmethoden untersucht. Dies umfasst die röntgenographische Phasenanalyse, die Verfeinerung der Strukturparameter der kristallinen Phasen, Messungen unter streifendem Einfall sowie Eigenspannungsmessungen und Messungen von Vorzugsorientierungen der Kristallite (Textur) an den Schichten. Durch den streifenden Einfall kann die Tiefenabhängigkeit der Elementverteilung im Absorber bestimmt werden. Eigenspannungsmessungen und Messungen der Textur sind besonders für die Eigenschaften der Rückelektrode wichtige Materialparameter.

Teilvorhaben: Anwendung und Evaluation von LiS-Zellen im automobilen Bereich

Das Projekt "Teilvorhaben: Anwendung und Evaluation von LiS-Zellen im automobilen Bereich" wird vom Umweltbundesamt gefördert und von Mercedes-Benz Group AG durchgeführt. Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronenmikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. lonische Flüssigkeiten sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Das Unternehmen führt die zusätzlichen elektrochemischen Tests im Hinblick auf die Anwendung im Bereich Elektromobilität durch. Hierzu gehören spezielle Ladungs- und Entladungstests, die mit realen Bedingungen vergleichbar sind. Die spezielle Charakterisierung der SPAN-basierten Kathodenseite (und der Lithium- oder Silizium-Anodenseite) anhand von XPS-Verfahren erfolgt ebenfalls, um den Alterungsmechanismus zu untersuchen, zu verstehen und zu verbessern.

Teilvorhaben: Charakterisierung der Ausgangsmaterialien und post mortem-Analyse

Das Projekt "Teilvorhaben: Charakterisierung der Ausgangsmaterialien und post mortem-Analyse" wird vom Umweltbundesamt gefördert und von Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF) - Institut für Textilchemie und Chemiefasern (ITCF) durchgeführt. Im Projekt sollen Schwefel/Polyacrylnitril (SPAN)-Komposite untersucht werden. Der SPAN-Komposit soll als monolithischer-, Faser- sowie als Monolith/Faser-Hybrid-Komposit ausgestaltet sein und charakterisiert werden. Die erhaltenen Ergebnisse sollen mit der chemischen Struktur und Morphologie korreliert und für weitere Optimierungen herangezogen werden. Neben der Polymersynthese für das Monolith-Design und die Monolith-Synthese (Anpassung der Porosität), müssen dazu faserbasierte Hybrid-PAN-Materialien, die Infiltration der PAN-basierten Hybridmaterialien mit Schwefel, die Umwandlung in SPAN, die Charakterisierung der SPAN-Materialien, adressiert werden. Analysen werden Rasterelektronen-mikroskopie, XRD-Analysen, Analysen zur Ausrichtung und Porosität, thermische Analyseverfahren sowie XPS-Verfahren beinhalten. Neuartige Copolymere auf PAN-Basis sowie PAN-basierte Polymermischungen werden entwickelt um Fasern mit unterschiedlichem Dehnungsverhältnis und Titer für monolithische faserbasierte Hybrid-SPAN-Materialien zu erhalten. lonische Flüssigkeiten (ILs) sollen für den Einsatz als Elektrolyte in Li-S-Batterien entwickelt und hergestellt werden. Schließlich sollen elektrochemische Lade- und Entladetests, die mit realen Bedingungen vergleichbar sind, im Hinblick auf die Anwendung im Bereich Elektromobilität durchgeführt werden. Das ITCF führt spezielle Analysen durch, die anderweitig nicht verfügbar sind. Hierzu gehören die Rasterelektronenmikroskopie (REM), die SAXS/WAXS-Analyse der Fasern zur Bestimmung des Kristallinitätsgrades, der Ausrichtung und der Porosität sowie die thermische Analyse (DSC-TGA- FT-IR-MS) für ein besseres Verständnis des Umwandlungsprozesses von PAN zu SPAN durch Analyse der bei der thermischen Umwandlung erzeugten Nebenprodukte. Außerdem führt das ITCF die sekundäre Faserverarbeitung zur Optimierung der Porosität und Kristallinität für eine optimale Schwefelimprägnierung und einen hohen endgültigen S-Gehalt (größer als 55 Gew.-%) durch.

Teilvorhaben: Röntgentechnologie

Das Projekt "Teilvorhaben: Röntgentechnologie" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Fakultät für Physik, Laboratorium für Applikationen der Synchrotronstrahlung (LAS) durchgeführt. Ziel des Projektes ist es, die Partikelemissionen von direkteinspritzenden Ottomotoren zu senken und so einen umweltfreundlichen Antrieb zu schaffen durch Kombination eines effizienten Ottomotors (CO2-arm, niedrige Stickoxidemissionen) mit einer Einspritztechnologie, die die Partikelemissionen bei hohen Motorlasten (realer Fahrbetrieb) um 50 % senkt. Erreicht werden muss eine schnelle und vollständige Durchmischung der Frischluft im Brennraum mit dem direkt eingespritzten Kraftstoff, wobei Wandaufträge von Kraftstoff minimiert werden müssen. Für eine Weiterentwicklung der Einspritztechnologie fehlt eine physikalische Beschreibung des Übergangs von der Injektor-Innenströmung zum Spray, das sich am Injektor-Austritt formt und die nachfolgende Gemischbildung und Verbrennung prägt. Geschaffen werden soll ein innovativer messtechnischer Zugang in Form einer mobilen Spraykammer, in der optische und röntgeno-grafische Untersuchungen simultan unter anwendungsnahen Bedingungen durchgeführt werden können. Entscheidend ist dabei der Zugang zu leistungsstarken Röntgenstrahlungsquellen wie ANKA und ESRF unter Einsatz von ultraschneller Röntgenbildgebungstechnik, maßgeschneiderten Detektorsystemen und einem virtuellen Röntgenlabor, in dem Röntgensimulationen und Bildanalysealgorithmen so kombiniert werden, dass Tröpfchendichte und -geschwindigkeiten während der Kraftstoffeinspritzung analysiert werden können. Die daraus erhaltenen Messergebnisse sollen als Enabler für die technische Weiterentwicklung in einer Simulation zusammengefasst und die angestrebte Reduktion der Emissionen an einem Demonstrationsmotor und in einem Demonstrationsfahrzeug nachgewiesen werden. Das Teilvorhaben besteht aus den APs 'Hochgeschwindigkeits-Röntgenmesstechnik' und 'Untersuchung der primären Spraystruktur' mit den Schwerpunkten Verfahrens- (Simulation/Algorithmen) und Detektorentwicklung, Messplatzaufbau und röntgenografische Untersuchung der Spraystruktur an den Strahlenquellen ANKA und ESRF.

ARTEMYS - Skalierbare, kostengünstige Fertigungstechnologien für Kompositkathoden und Elektrolytseparatoren in Festkörperbatterien

Das Projekt "ARTEMYS - Skalierbare, kostengünstige Fertigungstechnologien für Kompositkathoden und Elektrolytseparatoren in Festkörperbatterien" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie durchgeführt. Ziel des Verbundprojekts 'ARTEMYS' ist es, geeignete Prozesstechnologien für die Herstellung von vollkeramischen Festkörperbatterien zu erarbeiten, diese bezüglich ihrer Skalierbarkeit zu bewerten und mit den geeigneten Technologien Musterzellen im Labormaßstab zur Validierung darzustellen. Somit wird sowohl eine prozesstechnologische als auch kostenbasierte Entscheidungsgrundlage für eine potentiell nachfolgende Industrialisierung am Standort Deutschland gelegt. Durch den Zusammenschluss von drei Forschungsinstituten / Universtitäten sowie acht Firmen zu einem Kompetenznetzwerk entlang der gesamten Wertschöpfungskette der Batteriefertigung wird notwendiges Know-how von der Materialherstellung und -aufarbeitung über die Elektrodenprozessierung und Zellherstellung inklusive Fertigungsplanung bis hin zur Bewertung der Anwendung im Automobil gebündelt. Im Fokus steht die Untersuchung möglicher Degradationsprozesse in Festkörperbatterien mittels Röntgendiffraktometrie und differentieller elektrochemischer Massenspektrometrie. Für diese in situ-Techniken sollen experimentelle Aufbauten entwickelt werden, um sowohl den Einfluss des Festelektrolyten auf die volumetrische Expansion des Aktivmaterials (und umgekehrt) als auch die Hydrolyseempfindlichkeit sulfidischer Festelektrolyte und deren Kompositkathoden aufzuklären. Basierend auf den gewonnen Erkenntnissen soll eine Beurteilung der chemischen und mechanischen Stabilitätsgrenzen der Materialien während der Zellherstellung und im Betrieb erfolgen.

Teilvorhaben 2: Modul 4 - Trockenheitswirkung auf Holzanatomie und potenzielle Wasserleitfähigkeit

Das Projekt "Teilvorhaben 2: Modul 4 - Trockenheitswirkung auf Holzanatomie und potenzielle Wasserleitfähigkeit" wird vom Umweltbundesamt gefördert und von Hochschule für nachhaltige Entwicklung Eberswalde (FH), Fachbereich Holzingenieurwesen, Professur Angewandte Biologie des Holzes durchgeführt. Ergebnisdarstellung: Die lichtmikroskopische Analyse junger Einzelbäumen aus Proben der Trockenheitssimulation ergaben eine erhöhte Harzkanaldichte im Bast der toleranten Bäume gegenüber dem der sensitiven Bäume. Diese Ergebnisse zeigen sich aber unabhängig von der Herkunft, da innerhalb der einzelnen Herkünfte sowohl tolerante als auch sensitive Individuen auftraten. Anhand der mittels SR Mikro CT gewonnenen Tomogramme aus einem Herkunftsversuch konnte die dreidimensionale Struktur des Holzkörpers sehr gut dargestellt werden. Im Vergleich zu den lichtmikroskopischen Analysen, die an den identischen Fichtenholzproben durchgeführt wurden, ergab sich ein sehr ähnliches Volumenverhältnis der Lumina im Frühholz zum Spätholz, wobei das etwa zehnmal höhere Volumen im Frühholz die Bedeutung dieses Gewebetyps für die axiale Wassertransportkapazität widerspiegelt. Ebenso deutet die Zunahme des Zellwandvolumens in den Spätholzbereichen eines Jahrringes auf eine Verbesserung der Festigkeit und Stabilität für den Holzkörper in diesem Teil des Jahrringes hin. In der Zusammenschau mit Isotopenanalysen ergaben sich Folgendes: Ein gegenläufiges Verhalten zur intrinsischen Wassernutzungseffizienz zeigt die Resillience, also die Fähigkeit der Pflanzen zur Erholung nach einer Störung. Die Querschnittstracheidenfläche zeigt ein gegenläufiges Verhalten zur Anzahl der Harzkanäle im Spätholz und zur Resistance (Reaktionstärke nach Störung), die Zellwanddicke zeigt ein gegenläufiges Verhalten zur Recovery (Schnelligkeit der Erholung). Die holzanatomischen Untersuchungen auf den Monitoringflächen zeigen insbesondere auf der trockeneren Versuchsfläche, dass sich der relative Flächenanteil der wasserleitenden Frühholztracheiden in den negativen Weiserjahren in Bezug zu den jeweiligen Jahren davor und danach erhöhen, die Zellwanddicke dagegen nimmt ab. Auch die Harzkanaldichte nimmt als Reaktion auf negative Weiserjahre zu. Auf den 'feuchteren' Versuchsflächen sind die Zusammenhänge weniger deutlich oder fehlen. Aufgabenbeschreibung: Die Hochschule für nachhaltige Entwicklung befasste sich der mit holzanatomischen Analyse der Fichtenpopulationen. Ziel war es, einen Zusammenhang zwischen holzanatomischen Kenngrößen und der potenziellen Wasserleitfähigkeit sowie der Trockenstress-Reaktion von Jungpflanzen und Altbeständen auf den Herkunftsversuchsflächen und Monitoringflächen abzuleiten. Intensive lichtmikroskopische Untersuchungen erfolgten für die Monitoringflächen in Hermeskeil, Elberndorf, Lange Branke und Cunewalde an den negativen Weiserjahren 1976, 2003 und 2011 sowie am positiven Weiserjahr 1996. Die Bildanalyse erlaubte eine Untersuchung holzanatomischer Kenngrößen, wie z. B. Jahrringbreite, Zellwanddicke, Holzstrahldichte und Harzanaldichte. (Text gekürzt)

Teilvorhaben: LAUE-Scanner zur Ermittlung der Kornorientierungen von polykristallinen Bricks und Wafern

Das Projekt "Teilvorhaben: LAUE-Scanner zur Ermittlung der Kornorientierungen von polykristallinen Bricks und Wafern" wird vom Umweltbundesamt gefördert und von XRD Eigenmann GmbH durchgeführt. Mit dem geplanten Vorhaben 'Q-Crystal' sollen mit Hilfe von schnellen und neuartigen Verfahren der Qualitätsbewertung von Säulen und Wafern die Herstellungsprozesse von Blocksilizium unter industriellen Bedingungen optimiert werden. In den vergangenen Jahren hat die Weiterentwicklung des multikristallinen Blocksiliziums zur Entwicklung der beiden Materialtypen des 'Mono-Cast' (MC) Siliziums und des 'High-Performance-Multi' (HPM) Siliziums geführt. Da sowohl in MC-Si als auch in HPM-Si die Art, Geometrie und Form der multikristallinen Körner und Korngrenzen eine zentrale Rolle spielen, muss die Kornstruktur zu 100% in einer Produktion gemessen werden können. Durch Kombination der Daten aus der optischen Kornstrukturanalyse mit diffraktometrischen Daten eines scannenden Laue-Messsystems soll eine Referenzmessmethode zur vollflächigen Analyse der kristallographischen Kornorientierungen und Korngrenztypen an ganzen Wafern so weiterentwickelt werden, dass hinreichend große Stichproben entlang eines Bricks in vertretbarer Messzeit vermessen werden können, um diese Messdaten auch tomographisch aufbereiten zu können.

1 2 3 4 58 9 10