API src

Found 278 results.

Related terms

Umwandlung von Rueckstaenden aus der Altoelaufbereitung

Bei der Aufarbeitung von Altoelen unter Zusatz von Schwefelsaeure fallen erhebliche Mengen von Saeureharzen an. Eine Deponie ist wegen verschaerfter Umweltbestimmungen in Zukunft problematisch. Nach dem Verfahren der Preussag lassen sich Saeureharze in ein neutrales Umwandlungsprodukt umwandeln, das zusammen mit Hausmuell oder u.a. in der Baustoffindustrie eingesetzt werden kann.

Hocheffiziente, kostengünstige und langlebige Natrium-Ionen-Batterie Zellen

Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar. Fazit: In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.

Vorhersage der Stabilität von Lebensgemeinschaften aus dem Beitrag einzelner Arten zu Resistenz, Resilienz und Erholung

Ökologische Stabilität ist der Schlüssel zur Vorhersage der Folgen von Umweltveränderungen, denn sie umfasst Aspekte der Antwort auf verschiedene Störungsszenarien, zum Beispiel die Fähigkeit, Veränderungen zu widerstehen, diese zu absorbieren oder sich von ihnen zu erholen. Die wichtigsten Fortschritte bei der wissenschaftlichen Bewertung der ökologischen Stabilität in jüngster Zeit ergaben sich aus i) der Anerkennung der mehrdimensionalen Natur der Stabilität, ii) der Unterscheidung zwischen der Stabilität funktioneller Eigenschaften eines Ökosystems und der Stabilität der Zusammensetzung der Gemeinschaft und iii) der Erkenntnis der Bedeutung der räumlichen Dynamik für das Verständnis der lokalen Stabilitätseigenschaften. Trotz dieser Fortschritte wird unser Verständnis der Stabilität (und ihrer Verwendung in den Ökologie- und Umweltwissenschaften) immer noch durch unsere Unfähigkeit behindert, die Stabilität der Gemeinschaft anhand artspezifischer Leistungen und Merkmale vorherzusagen. Das Verständnis der Beiträge der Arten zur Stabilität ist das Hauptziel dieses Projektantrages. Wir werden Metriken verfeinern und testen, die die Reaktionen der Arten auf sich ändernde Umgebungen erfassen, und diese Metriken verwenden, um die Stabilität von Lebensgemeinschaften anhand der Leistung einzelner Arten vorherzusagen und die vorhergesagte Stabilität mit der beobachteten zu vergleichen. Die Arbeit ist in vier Arbeitspakete unterteilt, die Simulationen und Datenanalyse (WP 1) kombinieren mit drei experimentellen Arbeitspaketen zunehmender Komplexität (WP2-4). Die Metaanalyse in WP 1 verwendet kürzlich entwickelte Methoden zur Zerlegung von Stabilität, um Arten zu identifizieren, die zur Stabilität oder Verwundbarkeit in verschiedenen Arten von Ökosystemen und Organismen beitragen. Für die Experimente werden marine Planktongemeinschaften unterschiedlichen Trends und Temperaturschwankungen ausgesetzt sein. Diese Experimente werden von einem Bottom-up-Ansatz ausgehen, bei dem Arten mit bekannten Reaktionen zu Artenpaaren und Zusammenstellungen mit geringer Diversität kombiniert werden, wobei die erwartete mit der beobachteten Stabilität verglichen wird (WP 2). In WP 3 werden wir mithilfe eines Metacommunity-Setups testen, wie die Vorhersagbarkeit von Stabilitätsaspekten wie Resistenz, Resilienz, Erholungsfähigkeit und zeitliche Stabilität von der Konnektivität im Raum abhängt. Schließlich werden wir Mesokosmen verwenden, um zu testen, ob dieselben Merkmale die Stabilität der Phytoplanktongemeinschaft in Abwesenheit oder Gegenwart eines generalistischen Zooplankton-Verbrauchers beeinflussen.

Innovative Kupferschlackenaufbereitung für die Rohstoffversorgung, Teilvorhaben 2: Entwicklung eines Prozessschemas sowie Umweltverträglichkeitsprüfungen mittels Life Cycle Assessment

Innovative Kupferschlackenaufbereitung für die Rohstoffversorgung, Teilvorhaben 1: Chemische und Biochemische Laugungsmethoden

Extremereignisse im Ozean durch schmelzendes Grönlandeis

Mit dem hier vorgestellten Projekt wollen wir zwei Fragen beantworten, die momentan im Zusammenhang mit zunehmendem Schmelzen des grönländischen Eisschildes heiß diskutiert werden: der Zeitpunkt ersten Auftretens von Veränderungen im subpolaren Nordatlantik und die Wahrscheinlichkeit von Extremereignissen im Ozean jeweils hervorgerufen durch einen verstärkten bis außergewöhnlich starken Schmelzwassereintrag. Beides werden wir mit Hilfe von Simulationen mit dem neuen, bereits getesteten globalen Klimamodell FOCI-VIKING10 quantifizieren. Dieses einzigartige Modell ist für die Aufgabe besonders geeignet, weil es durch eingebettetes 2-Wege Nesting eine höhere Ozeangitterauflösung von 1/10° im Nordatlantik (30°-85°N) ermöglicht. In einer Reihe von multidekadischen Simulationen mit globaler Erwärmung von 1958-2050 schreiben wir unterschiedliche Projektionen des zukünftigen Schmelzwasserabflusses von Grönland vor, indem wir die lokalen, beobachteten Abflussraten bis 2016 verwenden und für die Folgejahre die lokalen Trends extrapolieren. Ergänzt werden die Trends durch stochastische Variabilität und systematisch eingefügte Extremwerte. Darüber hinaus werden wir neue Wege für die Modellvalidierung gehen, indem gezielt Satelliten- und Argo-float-Daten des meeresoberflächennahen Salzgehaltes auf räumliche und zeitliche Variabilität analysiert und verglichen werden. Als Hauptergebnis des Projektes werden wir Angaben zu Ort, Zeit und Größe der Veränderungen bereitstellen, mit denen der Ozean auf einen realistisch ansteigenden Schmelzwasserabfluss von Grönland reagiert, sowie Einblick in einen möglichen Einfluss auf das europäische Wetter und Klima geben.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Verständnis von Wolken und Niederschlag auf der Meter-Skala mit HALO und ICON – Luftmassentransformation in der Arktik

Die Entwicklung arktischer Luftmassen ist wichtig für die Entstehung und Beständigkeit von Wolken und Niederschlag. Zwei Phänomene – warme und feuchte Einflüsse aus dem Süden sowie kalte und trockene Strömungen aus dem Norden – verursachen besonders starke und schnelle Änderungen in den Luftmassen. Während dieser Ereignisse ändern sich die Zustände z.B. der Wolken, der Stabilität und des Feuchtebudgets sowohl räumlich als auch zeitlich. Aufgrund dieser schnellen Änderungen sowie den generellen arktischen Bedingungen mit niedrigen und oft starken Inversionen, ist es schwierig die Prozesse mit globalen Modellen mit einer groben Auflösung sinnvoll wiederzugeben. Um die entscheidenden Prozesse sowohl besser zu erfassen als auch zu parameterisieren, wird in diesem Projekt eine Kombination aus detaillierten Beobachtungen mit dem HALO Flugzeug und hoch-aufgelösten Simulationen mit dem ICON-LEM verwendet. Durch die lange Reichweite des HALO Flugzeuges wird es möglich sein dasselbe Ereignis mehrmals zu messen und dadurch einen breiten Einblick in die Struktur der Luftmasse zu bekommen. Darüber hinaus wird es durch die Lagrangsche, d.h. mit der Strömung mitbewegte, Flugstrategie möglich sein, die zeitliche Entwicklung der Luftmassen während der Ereignisse zu erfassen. Durch lokale Verfeinerungen um den tatsächlichen Flug herum wird die Auflösung des ICON-LEM Setups zwischen 1 km und 100 m variieren. Mit dieser einzigartige Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird es möglich sein, das Feuchtebudget während der beobachteten warmen und kalten Einströmungen abzuschätzen. Anhang dieser Abschätzung können anschließend offene Fragen wie die Effizienz des Niederschlages sowie deren Einfluss auf die Beständigkeit der arktischen Mischphasenwolken untersucht werden. Während die Lagrangsche Flugstrategie es ermöglicht neue und einzigartige Forschungsfragen zu untersuchen, stellt sie die Flugplanung vor eine große Herausforderung, da eine gute Abschätzung der Luftströmungen unerlässlich sein wird. Teil dieses Projekts ist es deshalb auch die Flugplanung durch hochaufgelöste Vorhersagen und die Verfolgung bestimmter Luftmassen zu unterstützen. Insbesondere die Berechnung mehrerer Trajektorien wird es ermöglichen die verbleibenden Unsicherheiten abzuschätzen und sinnvolle Flugmuster vorzuschlagen. Die vorgeschlagene Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird zu einem besseren Verständnis der Änderungen im Feuchtebudget und der Erhaltung von Mischphasenwolken während der feuchten sowie kalten Luftströmungen in der Arktis führen.

Modellierung der Reaktionskinetik bei der Raffination von Stahlschmelzen mit Topschlacken

Bei sekundärmetallurgischen Raffinationsprozessen durchläuft das Reaktionssystem Stahlschmelze/Topschlacke in der Regel oxidativ, amphoter und reduktiv geprägte Zeitphasen. Steuernde Komponente ist das sauerstoffaffine Element Aluminium, das heute allgemein als starkes Desoxidationsmittel eingesetzt wird. Am Reaktionsablauf sind die Schlackenkomponenten Fe2O3, FeO, MnO, P2O5, SiO2 und die Komponenten O, S Al der Stahlschmelze beteiligt. Im Rahmen des vorgelegten Forschungsvorhabens sind folgende Arbeitsschritte vorgesehen: - Entwicklung konsistenter Reaktionsmechanismen für oxidative und reduktive Prozessphasen- Modellierung der transportgesteuerten Reaktionskinetik- Evaluierung des entwickelten Modells mit Daten und Informationen der realen Raffinationstechnik im Stahlwerk. Ziel ist die Entwicklung eines Simulationsmodells der Raffination von Stahlschmelzen mit Topschlacken, in dem die Phasen Desoxidation, Schlackenreduktion und Stahlentschwefelung zusammengefasst sind. Die Arbeit wird auch Aufschlüsse liefern über bisher wenig beachtete Einflussgrößen auf den oxidischen Reinheitsgrad von Stahlschmelzen.

Planung, Bau und Inbetriebnahme einer 100% wasserstofffähigen Direktreduktionsanlage mit integrierten Einschmelzern zur Erzeugung von klimafreundlichem Roheisen als Grundlage für die Herstellung hochwertiger Stahlflachprodukte

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., PROM–IMPRINT: Verbesserung des Verständnisses von eismikrophysikalischen Prozessen durch Kombination von Multi-Frequenz und spektraler Radarpolarimetrie sowie Super-Partikel Modellierung

Polarimetrische Radar Beobachtungen zeigen eine detaillierte und komplexe Sicht der Mikrophysik von Wolken und Niederschlag. Die Nutzung diese Daten ist jedoch immer noch eine große Herausforderung, z.B. aufgrund der zahllosen unterschiedlichen Formen und Größen von Eispartikeln und Schneeflocken. Dieses Wirrwarr zu entschlüsseln, ist das Ziel dieses Forschungsprojektes. Um dies zu erreichen, wird eine spezielle Messkampagne mit den modernsten polarimetrischen Radargeräten durchgeführt werden, um winterliche stratiforme Mischwolken zu vermessen. Durch die Kombination von Multifrequenz-Messung und spektraler Polarimetrie stellen diese Beobachtungen eine nie dagewesene Informationsfülle bereit. Der Detailreichtum diese Daten wird es erlauben, empirische Hypothesen für dominanten wolkenmikrophysikalische Prozessen in bestimmten Wolkenregionen zu entwickeln. Derartige Hypothesen werden auch polarimetrische Fingerabdrücke oder Signaturen genannt, deren Interpretation und Gültigkeit allerdings für Mischwolken noch recht unsicher ist. Um diese Hypothesen zu konkretisieren und zu quantifizieren, wird ein Lagrangesches Monte-Carlo Partikelmodell verwendet. Unter Verwendung einer Modellhierarchie vom 3d mesoskaligen Modell ICON mit parametrisierter Wolkenmikrophysik hin zum 1d spektral aufgelösten Monte-Carlo Prozessmodell, werden die beobachteten Fälle und Phänomene simuliert, mit dem Ziel die Interpretation auf ein solide physikalisch-theoretische Basis zu stellen. Das Testen von Hypothesen erfolgt natürlich auch in die andere Richtung, d.h. alternative Modellformulierungen und -annahmen können anhand der Beobachtungsdaten kritisch getestet und validiert bzw. falsifiziert werden. Um die Lücke zwischen Modell und Beobachtung zu schließen, ist ein verläßlicher polarimetrischer Radar-Vorwärtsoperator notwendig, der im Rahmen des Projekt entwickelt bzw. verbessert wird. So werden z.B. Streurechnungen für partiell bereifte Schneeflocken durchgeführt werden. Durch diese schlagkräftige Kombination von modernsten Beobachtungssystemen und detailierten Modellen mit einem konsistenten Vorwärtsoperator werden Prozesse wie Depositionswachstum, Aggregation, Bereifen und Eismultiplikation untersucht werden und unser derzeitiges Wissen über diese Prozesse wird kritisch hinterfragt, getestet und erweitert. Basierend auf diesem verbesserten Prozessverständnis erhoffen wir uns die Parametrisierungen von Wolken- und Niederschlagsprozessen in Wetter- und Klimamodellen verbessern zu können. Nur mit solch verbesserten Prozessparametrisierungen wird es mittelfristig möglich sein, die reichhaltige Information, die die modernen polarimetrischen Radarsysteme bieten, in Wettervorhersagesystemen zu assimilieren, um so die Vorhersagen von Wolken und Niederschlag weiter zu verbessern.

1 2 3 4 526 27 28