API src

Found 1960 results.

Related terms

Effiziente, stabile und anwendungsreife Reaktoren für die photoelektrochemische Wasserspaltung auf Basis von nanostrukturierten Absorbern

Wasserstoff soll ein zentrales Element der Energiewende werden. Die Künstliche Photosynthese bietet eine attraktive Möglichkeit, Wasserstoff klimaneutral aus Wasser und Sonnenlicht zu erzeugen. Trotz materialwissenschaftlicher Fortschritte wurde das Verfahren bislang nicht industriell umgesetzt. Eine Analyse des Standes von Wissenschaft und Technik zeigt, dass zentrale Hindernisse auf den Gebieten der Modultechnologie, Industriemesstechnik und Fertigungsverfahren liegen. Im Rahmen des vorliegenden Projektes soll eine Zelltechnologie, die sich durch hohe Effizienz und Stabilität auszeichnet, vom Laboraufbau zu einer Demonstrationsanlage weiterentwickelt werden (TRL 4 zu TRL 6) . Gleichzeitig soll die industrielle Fertigung vorbereitet werden. Das Projektziel ist ein Modul aus mehreren Elektroden mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Die Ziele der Arbeiten am Fraunhofer CSP sind die Weiterentwicklung eines Labor-Teststandes sowie die Entwicklung eines einsatzbereiten Freiluft-Messstands für die langfristige Untersuchung der Demonstrationsanlagen unter Anwendungsbedingungen.

Effiziente, stabile und anwendungsreife Reaktoren für die photoelektrochemische Wasserspaltung auf Basis von nanostrukturierten Absorbern, Teilvorhaben: Metrologie für photoelektrochemische Materialien und Module

Wasserstoff soll ein zentrales Element der Energiewende werden. Die Künstliche Photosynthese bietet eine attraktive Möglichkeit, Wasserstoff klimaneutral aus Wasser und Sonnenlicht zu erzeugen. Trotz materialwissenschaftlicher Fortschritte wurde das Verfahren bislang nicht industriell umgesetzt. Eine Analyse des Standes von Wissenschaft und Technik zeigt, dass zentrale Hindernisse auf den Gebieten der Modultechnologie, Industriemesstechnik und Fertigungsverfahren liegen. Im Rahmen des vorliegenden Projektes soll eine Zelltechnologie, die sich durch hohe Effizienz und Stabilität auszeichnet, vom Laboraufbau zu einer Demonstrationsanlage weiterentwickelt werden (TRL 4 zu TRL 6) . Gleichzeitig soll die industrielle Fertigung vorbereitet werden. Das Projektziel ist ein Modul aus mehreren Elektroden mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Die Ziele der Arbeiten am Fraunhofer CSP sind die Weiterentwicklung eines Labor-Teststandes sowie die Entwicklung eines einsatzbereiten Freiluft-Messstands für die langfristige Untersuchung der Demonstrationsanlagen unter Anwendungsbedingungen.

Recycling organischer Reststoffe und CO2 zu Kraftstoffen

reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.

Mikrobielle Granula und Biofilm-Aggregate als Medien zur Übertragung spezieller metabolischer Eigenschaften in heterogene Mischkulturen

Bakterien mit speziellen strukturbildenden oder metabolischen Fähigkeiten (z.B. Flockenbildner, Nitrifikanten, CKW-Abbauer) werden in Bioaggregaten (Granula, Biofilme) angereichert und dann in Reaktoren zur biologischen Abwasserreinigung eingemischt. Durch Übertragung der neuen Fähigkeiten in die autochtone Lebensgemeinschaft (Bioaugmentation) soll die Einarbeitung des biologischen Systems und dessen Anpassung an geänderte Prozessbedingungn beschleunigt werden. Bedeutungsvoll ist ein solcher steuernder Eingriff dann, wenn die benötigten Bakterienarten sich nur sehr langsam vermehren (z.B. Nitrifikanten; Bio-P Bakterien), beim Anfahren einer Belebungs- oder Biofilmanlage, bei Regeneration der Anlage nach einem Unfall, wenn Abwässer mit ungewöhnlicher Zusammensetzung zu reinigen sind (z.B. spezielle Prozessabwässer aus der Industrie) oder Abwässer mit stark wechselnder Fracht und Zusammensetzung (z.B. Abwasser aus Firmen mit Kampagnenbetrieb, Abwasser aus touristischen Objekten). Es wird zunächst darum gehen, spezielle Anreicherungskulturen in Granula-Form heranzuzüchten. Nach Zudosieren der Granula in eine Modell-Belebungsanlage soll beobachtet werden, wie sich die Granula im System verhalten, ob sich die mit den Granula importierten Arten in der Mischkultur verbreiten, bzw. ob es durch Gentransfer zu einer Verbreitung der speziellen Fähigkeiten kommt.

Erfassung, Aufbereitung und datentechnische Verarbeitung technischer Informationen über kerntechnische Anlagen (TECDO)

International Collaboration in Chemistry: First Principles Multi-Lattice Kinetic Monte Carlo Simulations of NOx Storage Reduction Catalysts

The broad objective of the research is to gain a fundamental understanding of the surface reaction chemistry of exhaust catalysts operating under cycling conditions. Using an integrated theoretical approach we specifically target NOx abatement, with particular emphasis on the appearance and destruction of surface oxide phases as the reactor conditions cycle from oxidative to reductive during the operation of the NOx Storage Reduction (NSR) catalyst system. Methodologically this requires material-specific, quantitative and explicitly time-dependent simulation tools that can follow the evolution of the system over the macroscopic time-scales of NSR cycles, while simultaneously accounting for the atomic-scale site heterogeneity and spatial distributions at the evolving surface. To meet these challenging demands we will develop a novel multi-scale methodology relying on a multi-lattice first-principles kinetic Monte Carlo (kMC) approach. As representative example the simulations will be carried out on a PdO(101)/Pd(100) surface oxide model, but care will be taken to ensure a generalization of the multi-lattice first-principles kMC approach to other systems in which phase transformations may occur and result in a change in the surface lattice structure depending upon environmental variables.

Untersuchungen zum Gashaushalt der Versuchsdeponie Breitenau

Untersuchungen zur Deponiegasbildung bei der Betriebsweise 'Reaktordeponie'. Messungen der Gasverteilung und -zusammensetzung in drei, mit unterschiedlicher Schlussabdeckung ausgefuehrten Deponiefeldern.

Katalysatorforschung für nachhaltige Flugzeugtreibstoffe, Teilvorhaben: Wissensbasierte Entwicklung neuartiger Katalysatoren für nachhaltige Flugzeugkraftstoffe

Regionale und energieautarke Produktion von grünem Wasserstoff durch die direkte Kopplung eines Moduls zur Methanpyrolyse an eine Biogasanlage, Teilvorhaben: Entwicklung des Gesamtkonzepts der Pilotanlage, des Umschaltmodus und der Gasreinigung der Pyrolyseprodukte

Die verstärkte Umwandlung von Biomasse in hochwertige Energieträger und hier vor allem in Wasserstoff wird in den nächsten Jahren eine entscheidende Rolle in der Erreichung der nationalen Ziele zur Emissionsreduktion spielen. Durch die Verwendung von biogenen Rest- und Abfallstoffen zur Produktion von Biogas wird bereits ein wichtiger Beitrag geleistet. Das resultierende Biogas wird durch seine Verbrennung jedoch fast ausschließlich für die Erzeugung von Strom und Wärme verwendet, wodurch somit erneut CO2 freigesetzt wird. Ein entscheidender Beitrag für die Reduktion der Treibhausgasemission kann mithilfe dieses Vorgehens folglich nicht geleistet werden. Aus diesem Grund ist das Ziel des Projekts die Entwicklung eines energieautarken Plasma-Pyrolyse Moduls zur Erzeugung von grünem Wasserstoff aus Biomasse mit gleichzeitiger CO2-Entnahme in Form von immobilisiertem Kohlenstoff. Hierfür wird innerhalb der Projektarbeiten eine innovative Verfahrenskette aus Biogasaufbereitung, Umsetzung des Biomethans zu Wasserstoff über einen Mikrowellen-Pyrolysereaktor und die Reinigung des Wasserstoffs entwickelt. Zusätzlich wird die Stromerzeugung für den Spaltungsprozess über ein angegliedertes BHKW entwickelt und dieses Gesamtverfahren zu einer Pilotanlage zusammenführt. Durch die Kopplung des Reaktors an Biogasanlagen wird erstmals die Möglichkeit einer dezentralen Wasserstoff-Produktion mit negativem CO2-Fußabdruck geschaffen und praxisnah demonstriert.

Errichtung einer Ozonungsanlage zur Entfärbung von stark farbigen Abwässern aus der Reaktivfärbung und Recycling des entfärbten Abwassers

Die Hecking Deotexis GmbH ist ein 150 Jahre altes, mittelständisch geprägtes Textilunternehmen am Standort Neuenkirchen. Das Unternehmen stellt Oberbekleidungsstoffe für Damen und Herren her. Es verfügt über eine Weberei, Färberei und Ausrüstung. So werden u. a. Baumwolle und Elastomerfäden mit Reaktivfarbstoffen und Pigmenten gefärbt. Eine Besonderheit ist die Indigo-Kettfärbeanlage für Jeans. Die Firma plant die Errichtung einer neuen Anlage, wo die konzentrierten Abwässer aus der Färberei von Baumwollwebware mit Hilfe eines Ozonungsverfahren entfärbt und praktisch vollständig wieder verwendet werden sollen. Dazu sollen die konzentrierten Farbabwässer aus den verschiedenen Behandlungsstufen zusammengeführt und in einem Reaktor mit Ozon entfärbt werden. Die Ozonungsanlage wird in eine neue betriebliche Anlage integriert. Die Wiederverwendung des entfärbten Abwassers kann allerdings wegen der Aufkonzentrierung der Salze nicht im kompletten Kreislauf stattfinden. Die eine Hälfte soll als Waschwasser wieder in die Farbnachwäsche gehen, d.h. im eigentlichen Färbeprozess wieder eingesetzt werden, die andere Hälfte soll für innerbetriebliche Prozesse wie das Reinigen von Gefäßen und Ansatzbehältern genutzt werden. Dieses hat eindeutige Vorteile gegenüber den herkömmlichen Verfahren. So ist kein Einsatz zusätzlicher Chemikalien notwendig, es erfolgt eine Verringerung der anfallenden Klärschlammmenge und eine Einsparung von über 5000 Kubikmeter Frischwasser pro Jahr. Auch die kommunale Kläranlage, in die die Färbeabwässer bislang ungeklärt eingeleitet wurden, wird deutlich entlastet. Allerdings liegt der Energiebedarf bei der Ozonung höher, soll aber durch eine Optimierung des Verfahrens gesenkt werden.

1 2 3 4 5194 195 196