Das Projekt "Gesamtvorhaben: Hybrid-Kompensator für die Bereitstellung von Systemdienstleistungen (HYBKomp), Teilvorhaben: EVW" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Energieversorgung Wenzenbach GmbH.Ziel des Vorhabens ist die Erforschung und der Entwurf eines neuartigen Hybrid-Kompensators, der mehrere Systemdienstleistungen wie Erdschlussstromkompensation unter Berücksichtigung neuer Anforderungen wie die Kompensation höherfrequenter Harmonischer sowie die Stabilisierung eines Verteilnetzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung in einer einzigen Anlage vereint. Vorgehen: EVW wirkt mit bei der Netzanalyse, der Systemspezifikation, der Implementierung des Umrichtersystems sowie der Systemverifikation. Es wird eine Analyse der existierenden und funktionierenden Verteilnetze mit den übrigen Konsortialpartnern durchführt. Die Kommunikationsinfrastruktur und -anbindung wird von EVW betrachtet, sowie eine Definition von erforderlichen Schnittstellen, um die interdisziplinäre Kommunikation zwischen den technischen Bauteilen und einer vorhandenen Leitstelle zu gewährleisten. In der Umsetzungsphase legt EVW Wert auf Aspekte der Versorgungssicherheit. In der Spezifikations- und Auslegungsphase stellt EVW die Kommunikation zwischen den Projektpartnern sicher, um eine Erfüllung der wissenschaftlichen und technischen AP-Ziele zu gewähren. EVW leitet die Zusammenführung des Hybridspeicher-Gesamtsystems während der Implementierungsphase unter den technischen und regulatorischen Aspekten sowie der IKT. Es wird die Erfüllung der wissenschaftlichen Ziele und technischen Kriterien aus den vorhergehenden APs überwacht. EVW tritt in seiner Rolle als innovatives Energieversorgungsunternehmen auf. Der Schwerpunkt der Arbeit beruht auf der Analyse, Planung und Umsetzung von IKT und deren Schnittstellen. EVW übernimmt die Leitung zur Koordination des Hybridspeicher-Gesamtsystems in der Spezifikations-, Auslegungs- und Umsetzungsphase. Eine Sicherstellung der wissenschaftlichen und technischen AP-Ziele ist zu erreichen. Es werden die wissenschaftlichen Ziele und technischen Kriterien aus den grundlegenden APs überwacht.
Das Projekt "Gesamtvorhaben: Hybrid-Kompensator für die Bereitstellung von Systemdienstleistungen (HYBKomp), Teilvorhaben: SWH" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Stadtwerk Haßfurt GmbH.Ziel ist die Erforschung und der Entwurf eines neuartigen Hyb-Kom, der mehrere SDL in einer einzigen Anlage vereint: u.a. Optimierung der Erdschlussstromkompensation (mit Kompensation höherfrequenter Harmonischer) oder Stabilisierung des Netzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung. Vorgehen: Durch elektrotechn. Modellierung und Simulation eines Beispiel-Verteilnetzes werden die Anforderungen an den Hyb-Kom spezifiziert. Zunächst wird ein Kleinleistungs-Laboraufbau als Plattform für die Erforschung, Implementierung und Validierung der benötigten Funktionalitäten und Algorithmen realisiert. Dann wird das Speichersystem aus RedOx-Flow-Bat./Schwungmassenspeicher hinsichtlich Leistung und Kapazität ausgelegt. Es folgen: Feldaufbau, Skalierung auf Feldniveau und Integration aller Komponenten in das Netz des Verteilnetzbetreibers. Das Monitoring des Feldaufbaus und seines Verhaltens unter realen Bedingungen soll Aufschluss über seine Systemeigenschaften liefern und Optimierungen ermöglichen. SWH wird die Netzinfrastruktur für die Implementierung des Hybridkomp bereitstellen und sich an dessen Erforschung, auch in WW mit bereits bestehenden Erzeugungs-, Umwandlungs- und Speichereinrichtungen, beteiligen. Ein wichtiger Aspekt für SWH ist, neben der Bereitstellung von SDL, wie Oberschwingungsreduktion, Wirkleistungseinspeisung und Blindleistungskompensation, die Optimierung der Erdschlusskompensation im Hinblick auf eine Zunahme umrichterbasierter Einspeiser und Lasten. Durch IKT Anbindung des Systems an das vorhandene Netzleitsystem sind Messwerte anderer Messpunkte im Verteilnetz verfügbar und können für die Fehlererkennung und -analyse genutzt werden.
Das Projekt "Gesamtvorhaben: Hybrid-Kompensator für die Bereitstellung von Systemdienstleistungen (HYBKomp), Teilvorhaben: KSA" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: KAUTZ Starkstrom-Anlagen GmbH.Ziel des Vorhabens ist die Erforschung und der Entwurf eines neuartigen Hybrid-Kompensators, der mehrere Systemdienstleistungen in einer einzigen Anlage vereint. Hierzu zählen u.a. die Optimierung der Erdschlussstromkompensation unter Berücksichtigung neuer Anforderungen wie die Kompensation höherfrequenter Harmonischer sowie die Stabilisierung des Netzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung. Vorgehen: Durch elektrotechnische Modellierung und Simulation eines Beispiel-Verteilnetzes werden die Anforderungen an den Hybrid-Kompensator spezifiziert. Zunächst wird ein Kleinleistungs-Laboraufbau als Plattform für die Erforschung, Implementierung und Validierung der benötigten Funktionalitäten und Algorithmen realisiert. Zeitgleich wird das Speichersystem aus RedOx-Flow-Batterie und Schwungmassenspeicher hinsichtlich Leistung und Kapazität ausgelegt. Zur Validierung der Funktionsfähigkeit im realen Netzbetrieb wird nach erfolgreicher Laborerprobung ein Feldaufbau errichtet. Der Laboraufbau wird auf Feldniveau skaliert; es werden alle Komponenten zusammengeführt und in das Netz des Verteilnetzbetreibers integriert. Das Monitoring des Feldaufbaus und seines Verhaltens unter realen Bedingungen soll Aufschluss über seine Systemeigenschaften liefern und Optimierungen ermöglichen. Kautz strebt die Analyse der wesentlichen benötigten Systemdienstleistungen am Beispiel mehrerer unterschiedlicher Verteilnetze mit hoher dezentraler, regenerativer Einspeisung an. Ebenso den Entwurf eines informations- und kommunikationstechnisch angebundenen, auf der Mittelspannungsebene wirkenden, umrichterbasierten Systems , das die zentralen Systemdienstleistungen integriert. Dabei sollen die grundsätzlichen elektrotechnischen Gegebenheiten, und vor allem deren Unterschiede, in den zu untersuchenden Verteilnetzen untersucht, abgebildet, bewertet und lösungstechnisch abgebildet werden.
Das Projekt "IBiFi: Erforschung, Entwicklung und Evaluation eines Fügeverfahrens zur Realisierung integrierter Bipolarplatten-Filz-Komponenten für Redox-Flow-Batterien, Teilprojekt: Entwicklung einer Klebemethode für die Serienfertigung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Polyprocess GmbH.Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Das Projekt "PhotoFlow: Photoelektrochemische Redox-Flow-Batterien, Teilprojekt: Entwicklung von redoxaktiven Polymeren" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Technische Chemie und Umweltchemie - Center for Energy and Environmental Chemistry.Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem so kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind daher die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten für den Einsatz in Photo-RFB sowie ein dazu passenden Zell- und Modulkonzept. Neben der Entwicklung des Systems und seiner Komponenten sollen zudem auch fundamentale Daten zu der Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden, die bisher nicht verfügbar sind. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Die FSU Jena übernimmt im Rahmen des Projektes das Design und die Synthese der redoxaktiven Polymere. Diese werden an die entsprechenden Photoelektroden angepasst. Diese Materialien werden für die Entwicklung der Elektrolyten genutzt.
Das Projekt "PhotoFlow: Photoelektrochemische Redox-Flow-Batterien, Teilprojekt: Entwicklung der Photoelektroden und Charakterisierung des Gesamtsystems" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem so kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind daher die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten für den Einsatz in Photo-RFB sowie ein dazu passenden Zell- und Modulkonzept. Neben der Entwicklung des Systems und seiner Komponenten sollen zudem auch fundamentale Daten zu der Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden, die bisher nicht verfügbar sind. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Das DECHEMA-Forschungsinstitut ist als Verbundkoordinator für die Koordination des Projektes und das Gesamtkonzept verantwortlich. Außerdem werden dort die Photoelektroden entwickelt und das Gesamtsystem getestet und charakterisiert. Die Entwicklung geht zunächst aus von einem Referenzsystem, welches auf dem Stand der Technik basiert. Anschließend werden verbesserte Photoelektroden entwickelt, welche auf ihre photoelektrochemischen Eigenschaften und Stabilität untersucht werden. Die Entwicklung geht dabei Hand in Hand mit der des Elektrolyten, um sie ideal auf einander abzustimmen.
Das Projekt "PhotoFlow: Photoelektrochemische Redox-Flow-Batterien, Teilprojekt: Entwicklung von Elektrolyten für photoelektrochemische Redox-Flow-Batterien" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: JenaBatteries GmbH.Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten sowie ein dazu passendes Zell- und Modulkonzept. Neben der Entwicklung des Systems sollen zudem auch fundamentale Daten zur Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Die JenaBatteries GmbH ist als Verbundprojektpartner für die Erforschung und Entwicklung der Elektrolytlösungen, sowie der Membran- und Elektrodenmaterialien verantwortlich. Es werden Wechselwirkungen der Elektrolytlösungen auf alle Systemkomponenten eingehend analysiert. Hierzu zählen u.a. Untersuchungen der Temperaturabhängigkeit und Langzeittests zur Evaluierung der Stabilität. Die Entwicklung geht dabei Hand in Hand mit der der Photoelektroden und des Zelldesigns. Eine Potentialanalyse der neuen Photo-RFB-Technologie wird Informationen zur Einschätzung der langfristigen Wettbewerbsfähigkeit liefern. Abschließend wird ein Demonstrator gebaut und dessen Funktionalität charakterisiert.
Das Projekt "IBiFi: Erforschung, Entwicklung und Evaluation eines Fügeverfahrens zur Realisierung integrierter Bipolarplatten-Filz-Komponenten für Redox-Flow-Batterien, Teilprojekt: Übergeordnete Charakterisierung und Entwicklung einer serientauglichen thermischen Fügemethode für die Fertigung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: DLR-Institut für Vernetzte Energiesysteme e.V..Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Das Projekt "TubulAir+-: Schlüsseltechnologien für eine kostengünstig zu fertigende, mikrotubuläre Redox Flow-Batterie, Qualitätsuntersuchungen an Komponenten" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.Hintergrund: Energieeffiziente, preisgünstige Möglichkeiten, elektrischen Strom zu speichern, sind eine der zentralen Herausforderungen, die eine künftige, auf fluktuierenden Energiequellen basierende Energieversorgungsstruktur stellt. Projektbeschreibung: Ziel des Projekts tubulAir+- ist die Entwicklung einer neuartigen tubulären luftbetriebenen Redox- Flow Batterie mit gesteigerter Energie? und Leistungsdichte für stationäre Anwendungen. Hierzu soll der flüssige Elektrolyt der Vanadium-Redox-Flow Batterie auf der Kathodenseite durch eine Luft?/Wasserdampf?Elektrode ersetzt werden. Im Rahmen dieses Verbundprojektes agiert die Arbeitsgruppe Elektrochemie als Bindeglied zwischen den Herstellern der Einzelkomponenten (Elektrolyt, nanostrukturierte Elektrode, Katalysator, Membran) und Anwendern des Gesamt-Systems und führt Untersuchungen zur Leistungsfähigkeit und Stabilität der Komponenten durch. Dazu wurde ein Teststand für Redox-Flow-Batterien aufgebaut und ein Monitoring-System zur Ermittlung des Ladungszustandes entwickelt. Zusätzlich sollen die einzelnen Komponenten und ihr Zusammenwirken als Halbzelle elektrochemisch charakterisiert werden. Besonderes Augenmerk soll dabei auf die Stabilität der einzelnen Komponenten in den entsprechenden Medien und unter den entsprechenden elektrochemischen Bedingungen gerichtet werden. Die Ergebnisse aus diesen Untersuchungen können bei der Entwicklung der Komponenten einen Beitrag zur Verbesserung der Materialqualität leisten. Schließlich sollen die gewonnenen Erkenntnisse zu einem Katalog aus Qualitätsanforderungen für die Komponenten von Redox-Flow Batterien, Elektroden, Membranen, Elektrolyten, zusammengefasst werden.
Das Projekt "Teilvorhaben 4^Teilvorhaben 1^Teilvorhaben 7^KMU-innovativ - Klimaschutz: Entwicklung von leitfähigen Kunststoffcomposites mit verbesserter Verarbeitbarkeit und erhöhter Schlagzähigkeit/Biegefestigkeit^Teilvorhaben 6, Teilvorhaben 5" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Kessen Maschinenbau GmbH.Das Ziel des Forschungsprojekts ist die Entwicklung von elektrisch und thermisch leitfähigen Materialien mit einer im Vergleich zu bisher für diesen Zweck verwendeten Materialien verbesserten Verarbeitbarkeit sowie erhöhter Schlagzähigkeit bzw. Biegefestigkeit auf Basis einer neuartigen Rezeptur von Kunststoffcomposites bestehend aus einem Thermoplasten, einem Füllstoffsystem und einer weichen Kautschukphase. Im Rahmen des Projekts soll Kessen federführend Entwicklung, Fertigung und Erprobung eines Redox Flow Moduls durchführen.
Origin | Count |
---|---|
Bund | 16 |
Type | Count |
---|---|
Förderprogramm | 16 |
License | Count |
---|---|
offen | 16 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 1 |
Resource type | Count |
---|---|
Keine | 5 |
Webseite | 11 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen & Lebensräume | 8 |
Luft | 7 |
Mensch & Umwelt | 16 |
Wasser | 5 |
Weitere | 16 |