Das Projekt "Teilvorhaben: EVW" wird vom Umweltbundesamt gefördert und von Energieversorgung Wenzenbach GmbH durchgeführt. Ziel des Vorhabens ist die Erforschung und der Entwurf eines neuartigen Hybrid-Kompensators, der mehrere Systemdienstleistungen wie Erdschlussstromkompensation unter Berücksichtigung neuer Anforderungen wie die Kompensation höherfrequenter Harmonischer sowie die Stabilisierung eines Verteilnetzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung in einer einzigen Anlage vereint. Vorgehen: EVW wirkt mit bei der Netzanalyse, der Systemspezifikation, der Implementierung des Umrichtersystems sowie der Systemverifikation. Es wird eine Analyse der existierenden und funktionierenden Verteilnetze mit den übrigen Konsortialpartnern durchführt. Die Kommunikationsinfrastruktur und -anbindung wird von EVW betrachtet, sowie eine Definition von erforderlichen Schnittstellen, um die interdisziplinäre Kommunikation zwischen den technischen Bauteilen und einer vorhandenen Leitstelle zu gewährleisten. In der Umsetzungsphase legt EVW Wert auf Aspekte der Versorgungssicherheit. In der Spezifikations- und Auslegungsphase stellt EVW die Kommunikation zwischen den Projektpartnern sicher, um eine Erfüllung der wissenschaftlichen und technischen AP-Ziele zu gewähren. EVW leitet die Zusammenführung des Hybridspeicher-Gesamtsystems während der Implementierungsphase unter den technischen und regulatorischen Aspekten sowie der IKT. Es wird die Erfüllung der wissenschaftlichen Ziele und technischen Kriterien aus den vorhergehenden APs überwacht. EVW tritt in seiner Rolle als innovatives Energieversorgungsunternehmen auf. Der Schwerpunkt der Arbeit beruht auf der Analyse, Planung und Umsetzung von IKT und deren Schnittstellen. EVW übernimmt die Leitung zur Koordination des Hybridspeicher-Gesamtsystems in der Spezifikations-, Auslegungs- und Umsetzungsphase. Eine Sicherstellung der wissenschaftlichen und technischen AP-Ziele ist zu erreichen. Es werden die wissenschaftlichen Ziele und technischen Kriterien aus den grundlegenden APs überwacht.
Das Projekt "Teilvorhaben: SWH" wird vom Umweltbundesamt gefördert und von Stadtwerk Haßfurt GmbH durchgeführt. Ziel ist die Erforschung und der Entwurf eines neuartigen Hyb-Kom, der mehrere SDL in einer einzigen Anlage vereint: u.a. Optimierung der Erdschlussstromkompensation (mit Kompensation höherfrequenter Harmonischer) oder Stabilisierung des Netzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung. Vorgehen: Durch elektrotechn. Modellierung und Simulation eines Beispiel-Verteilnetzes werden die Anforderungen an den Hyb-Kom spezifiziert. Zunächst wird ein Kleinleistungs-Laboraufbau als Plattform für die Erforschung, Implementierung und Validierung der benötigten Funktionalitäten und Algorithmen realisiert. Dann wird das Speichersystem aus RedOx-Flow-Bat./Schwungmassenspeicher hinsichtlich Leistung und Kapazität ausgelegt. Es folgen: Feldaufbau, Skalierung auf Feldniveau und Integration aller Komponenten in das Netz des Verteilnetzbetreibers. Das Monitoring des Feldaufbaus und seines Verhaltens unter realen Bedingungen soll Aufschluss über seine Systemeigenschaften liefern und Optimierungen ermöglichen. SWH wird die Netzinfrastruktur für die Implementierung des Hybridkomp bereitstellen und sich an dessen Erforschung, auch in WW mit bereits bestehenden Erzeugungs-, Umwandlungs- und Speichereinrichtungen, beteiligen. Ein wichtiger Aspekt für SWH ist, neben der Bereitstellung von SDL, wie Oberschwingungsreduktion, Wirkleistungseinspeisung und Blindleistungskompensation, die Optimierung der Erdschlusskompensation im Hinblick auf eine Zunahme umrichterbasierter Einspeiser und Lasten. Durch IKT Anbindung des Systems an das vorhandene Netzleitsystem sind Messwerte anderer Messpunkte im Verteilnetz verfügbar und können für die Fehlererkennung und -analyse genutzt werden.
Das Projekt "Teilvorhaben: KSA" wird vom Umweltbundesamt gefördert und von KAUTZ Starkstrom-Anlagen GmbH durchgeführt. Ziel des Vorhabens ist die Erforschung und der Entwurf eines neuartigen Hybrid-Kompensators, der mehrere Systemdienstleistungen in einer einzigen Anlage vereint. Hierzu zählen u.a. die Optimierung der Erdschlussstromkompensation unter Berücksichtigung neuer Anforderungen wie die Kompensation höherfrequenter Harmonischer sowie die Stabilisierung des Netzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung. Vorgehen: Durch elektrotechnische Modellierung und Simulation eines Beispiel-Verteilnetzes werden die Anforderungen an den Hybrid-Kompensator spezifiziert. Zunächst wird ein Kleinleistungs-Laboraufbau als Plattform für die Erforschung, Implementierung und Validierung der benötigten Funktionalitäten und Algorithmen realisiert. Zeitgleich wird das Speichersystem aus RedOx-Flow-Batterie und Schwungmassenspeicher hinsichtlich Leistung und Kapazität ausgelegt. Zur Validierung der Funktionsfähigkeit im realen Netzbetrieb wird nach erfolgreicher Laborerprobung ein Feldaufbau errichtet. Der Laboraufbau wird auf Feldniveau skaliert; es werden alle Komponenten zusammengeführt und in das Netz des Verteilnetzbetreibers integriert. Das Monitoring des Feldaufbaus und seines Verhaltens unter realen Bedingungen soll Aufschluss über seine Systemeigenschaften liefern und Optimierungen ermöglichen. Kautz strebt die Analyse der wesentlichen benötigten Systemdienstleistungen am Beispiel mehrerer unterschiedlicher Verteilnetze mit hoher dezentraler, regenerativer Einspeisung an. Ebenso den Entwurf eines informations- und kommunikationstechnisch angebundenen, auf der Mittelspannungsebene wirkenden, umrichterbasierten Systems , das die zentralen Systemdienstleistungen integriert. Dabei sollen die grundsätzlichen elektrotechnischen Gegebenheiten, und vor allem deren Unterschiede, in den zu untersuchenden Verteilnetzen untersucht, abgebildet, bewertet und lösungstechnisch abgebildet werden.
Das Projekt "Teilprojekt: Entwicklung einer Klebemethode für die Serienfertigung" wird vom Umweltbundesamt gefördert und von Polyprocess GmbH durchgeführt. Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Das Projekt "Teilprojekt: Entwicklung von redoxaktiven Polymeren" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Technische Chemie und Umweltchemie - Center for Energy and Environmental Chemistry durchgeführt. Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem so kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind daher die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten für den Einsatz in Photo-RFB sowie ein dazu passenden Zell- und Modulkonzept. Neben der Entwicklung des Systems und seiner Komponenten sollen zudem auch fundamentale Daten zu der Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden, die bisher nicht verfügbar sind. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Die FSU Jena übernimmt im Rahmen des Projektes das Design und die Synthese der redoxaktiven Polymere. Diese werden an die entsprechenden Photoelektroden angepasst. Diese Materialien werden für die Entwicklung der Elektrolyten genutzt.
Das Projekt "Teilprojekt: Entwicklung der Photoelektroden und Charakterisierung des Gesamtsystems" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem so kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind daher die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten für den Einsatz in Photo-RFB sowie ein dazu passenden Zell- und Modulkonzept. Neben der Entwicklung des Systems und seiner Komponenten sollen zudem auch fundamentale Daten zu der Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden, die bisher nicht verfügbar sind. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Das DECHEMA-Forschungsinstitut ist als Verbundkoordinator für die Koordination des Projektes und das Gesamtkonzept verantwortlich. Außerdem werden dort die Photoelektroden entwickelt und das Gesamtsystem getestet und charakterisiert. Die Entwicklung geht zunächst aus von einem Referenzsystem, welches auf dem Stand der Technik basiert. Anschließend werden verbesserte Photoelektroden entwickelt, welche auf ihre photoelektrochemischen Eigenschaften und Stabilität untersucht werden. Die Entwicklung geht dabei Hand in Hand mit der des Elektrolyten, um sie ideal auf einander abzustimmen.
Das Projekt "Teilprojekt: Entwicklung von Elektrolyten für photoelektrochemische Redox-Flow-Batterien" wird vom Umweltbundesamt gefördert und von JenaBatteries GmbH durchgeführt. Mit dem hier beantragten Forschungsvorhaben zur Entwicklung einer photoelektrochemischen Redox-Flow-Batterie (Photo-RFB) soll ein Energiespeichersystem bereitgestellt werden, welches zusätzlich zu seinen Funktionen als Speicher auch direkt mit Sonnenlicht geladen werden kann, ohne dass dafür eine separate Stromzufuhr oder weitere Peripherie erforderlich sind. Im Gegensatz zu der Kombination einer Photovoltaik-Zelle mit einer separaten Batterie können in einem solchen integrierten System viele Komponenten sowie ein Teil der Regelungstechnik eingespart werden und das Gesamtsystem kostengünstiger, kleiner und effizienter realisiert werden. Aufgrund dieser Eigenschaften bieten sich Photo-RFB als eine der Schlüsseltechnologien für das Gelingen der Energiewende an. Die wesentlichen Ziele dieses Forschungsvorhabens sind die Entwicklung, Charakterisierung und Optimierung von Materialien für Photoelektroden und darauf maßgeschneiderte organische Elektrolyten sowie ein dazu passendes Zell- und Modulkonzept. Neben der Entwicklung des Systems sollen zudem auch fundamentale Daten zur Effizienz und den limitierenden Faktoren dieser innovativen Technologie gesammelt werden. Dieses Wissen ist unabdingbar für eine kritische Evaluierung der Wettbewerbsfähigkeit dieses neuartigen integrierten Systems. Die JenaBatteries GmbH ist als Verbundprojektpartner für die Erforschung und Entwicklung der Elektrolytlösungen, sowie der Membran- und Elektrodenmaterialien verantwortlich. Es werden Wechselwirkungen der Elektrolytlösungen auf alle Systemkomponenten eingehend analysiert. Hierzu zählen u.a. Untersuchungen der Temperaturabhängigkeit und Langzeittests zur Evaluierung der Stabilität. Die Entwicklung geht dabei Hand in Hand mit der der Photoelektroden und des Zelldesigns. Eine Potentialanalyse der neuen Photo-RFB-Technologie wird Informationen zur Einschätzung der langfristigen Wettbewerbsfähigkeit liefern. Abschließend wird ein Demonstrator gebaut und dessen Funktionalität charakterisiert.
Das Projekt "Teilprojekt: Übergeordnete Charakterisierung und Entwicklung einer serientauglichen thermischen Fügemethode für die Fertigung" wird vom Umweltbundesamt gefördert und von DLR-Institut für Vernetzte Energiesysteme e.V. durchgeführt. Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Professur für Anwendungsentwicklung durchgeführt. Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten bildgebenden Systems (NeuRoFast), an der Neutronentomographieanlage ANTARES am FRM-II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz / TU München), das es ermöglicht Neutronen- und Röntgen- Bildgebung gleichzeitig an einer Probe durchzuführen. Zusätzlich werden in NeuRoFast neue Kontrastverfahren für die Untersuchung dynamischer Prozesse im Bereich neuer Materialien für Energieanwendungen entwickelt und Pilotexperimente durchgeführt. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom auf und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TU München: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen- Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit bislang ungekannten räumlichen (10 Mikrometer) und zeitlichen (10 Herz) Auflösungen entwickelt werden. Der ANTARES Messplatz am FRM-II hat die weltweit höchste Flussrate und Kollimation. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast dadurch ein weltweit einzigartiges Analysesystem geschaffen. Für die Erschließung neuer Anwendungsfelder für den ANTARES Setup am FRM-II müssen neue Verfahren für die Untersuchung von Energieanwendungen mit Neutronenbildgebung entwickelt werden. Im Fokus von NeuRoFast stehen die vielversprechenden Redox-Flow-Batterien (RFBs) sowie Elektrolyse mit Festelektrolytmembran (PEMELs), denen Schlüsselrollen für die Energiewende zugesprochen werden. Für PEMELs und RFBs werden in NeuRoFast daher dynamische in operando Kontrastverfahren am IMTEK entwickelt, die auf Lithium- und Wasserstoffisotopen beruhen. Dunkelfeld und Phasenkontrast-Bildgebung sollen zudem für die Untersuchung von Blasenbildungsdynamiken verwandt werden.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Technische Universität München, Physik Department, E17: Lehrstuhl für Physik , Biophysik durchgeführt. Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten Tomographiesystems (NeuRoFast), an der Neutronenanlage ANTARES am FRM-II, dass es ermöglicht Neutronen- und Röntgen-Tomographie mit zusätzlichem Gitter-basiertem Phasen- und Dunkelfeld-Kontrast gleichzeitig an einer Probe durchzuführen. Diese neuen Methodologien soll auf zentrale Fragestellungen im Bereich neuer Polymerkompositmembranen für Redox Flowbatterien und Elektrolyse- und Brennstoffzellen angewandt werden. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom (Förderkennziffer: 05K13VF1) auf, und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TUM: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen-Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit den derzeit höchstmöglichen zeitlichen und räumlichen Auflösungen angeschafft und implementiert werden. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast ein einzigartiges Analysesystem geschaffen. AP 1: Einbau eines kombinierten Gitter-basierten Röntgen- und Neutronen Phasenkontrast- und Dunkelfeld-Bildgebungsaufbaus AP 1.1: Entwicklung und Aufbau des Systems AP 1.1: Bildverarbeitung AP 1.3: Inbetriebnahme und Charakterisierung des Systems AP 2: Entwicklung und Implementierung eines zeitlich und räumlich höchstauflösenden 'Super-Resolution'-Neutronendetektors am FRM-II AP 2.1: Aufbau des Systems AP 2.2: Inbetriebnahme und Charakterisierung des Systems AP 2.3: Anwendungen.
Origin | Count |
---|---|
Bund | 16 |
Type | Count |
---|---|
Förderprogramm | 16 |
License | Count |
---|---|
offen | 16 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 1 |
Resource type | Count |
---|---|
Keine | 5 |
Webseite | 11 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen & Lebensräume | 8 |
Luft | 7 |
Mensch & Umwelt | 16 |
Wasser | 5 |
Weitere | 16 |