technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).
technologyComment of chromium production (RoW): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) technologyComment of chromium production (RER): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) ALUMINOTHERMIC PROCESS The thermic process uses aluminium as a reducing agent for chromium hydroxide. The charge is weighed and loaded into a bin, which is taken to an enclosed room to mix the contents. The firing pot is prepared by ramming refractory sand mixed with water around a central former. After ramming the firing pot, the inner surface is coated with a weak binder solution and dried under a gas fired hood before being transferred to the firing station. The raw material mix is automatically fed at a controlled rate into the firing pot, where the exothermic reaction takes place. When the metal has solidified following the reaction, the firing pot is removed and transferred by crane to a cooling conveyor. On removal from the cooling conveyor (by crane), the firing pot is placed on a stripping bogie for transferral to a stripping booth. Inside the closed booth, the pot casing is hoisted off the solidified metal/slag. The slag is separated from the Chromium metal “button” and sent to a despatch storage area. Water is used to reduce button temperature to below 100 ºC. After cooling the metal button is transferred to other departments on site for cleaning, breaking, crushing and grinding to achieve the desired product size. ELECTROLYTIC PROCESS In the electrolytic process normally high carbon ferrochrome is used as the feed material which is then converted into chromium alum by dissolution with sulphuric acid at temperatures at about 200 ºC. After several process steps using crystallisation filtration ageing, a second filtration and a clarifying operation the alum becomes the electrolyte for a diaphragm cell. Chromium is plated onto stainless steel cathodes until it attains a thickness of ca. 3 mm. The process is very sensitive. The additional de-gassing (heating at 420 °C) stage is necessary because the carbon content of the electrolytic chromium is sometimes too high for further industrial applications. The cooled chromium metal is fragmented with a breaker prior to crushing and drumming. The generated slag can be reused as refractory lining or sold as abrasive or refractory material. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC’s and heavy metals. Emissions to water are overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Solid waste is composed of dust, fume and sludge, and slag. References: IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169
technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.
Das Projekt "Teil I" wird vom Umweltbundesamt gefördert und von Pall Rochem Wassertechnik GmbH durchgeführt. Eine Weiterentwicklung des DT-Moduls der Fa. Rochem fuer Druecke bis zu 200 bar ermoeglicht jetzt den Einsatz der Umkehrosmose bei Abwaessern, deren Aufbereitung bisher aufgrund zu hoher Salzgehalte anderen Verfahren, wie z.B. der Eindampfung, vorbehalten waren. Erste gemeinsam von der Fa. Rochem und dem Institut fuer Verfahrenstechnik, Aachen durchgefuehrte Versuche lassen erwarten, dass auch die Aufbereitung des stark salzhaltigen Abwassers der Deponie Halle-Lochau (Leitfaehigkeit 35-40 MS/cm) mittels Hochdruck-Umkehrosmose bei 200 bar moeglich ist. Im Rahmen des beantragten Vorhabens soll die Einsatzfaehigkeit der Hochdruckumkehrosmose gezeigt werden, wodurch eine energetisch und kostenmaessig guenstige Aufbereitung des Sickerwassers der Deponie Halle-Lochau moeglich waere. Begleitend soll der Einfluss von Fremdsalzen auf die Loeslichkeit des Haertebildners Kalziumsulfat und die wirtschaftlich interessante Moeglichkeit der Konzentratreduktionsmittelfaellung untersucht werden.
Das Projekt "LeaNOx Development for Lean Burn Cars and Diesel Trucks" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie (LTC) durchgeführt. General Information: Objectives and content: In the search for vehicle power sources with low fuel consumption, the lack of an effective after-treatment device for NOx hinders the full exploitation of fuel efficient diesel and lean-burn engines. The reduction of NOx in large oxygen excess using a reducing agent such as hydrocarbons from the fuel and a selective catalyst will possibly provide an effective solution. The on-going LeaNOx program indicates a high potential for such systems. In the proposed project three demonstrator vehicles and targeted basic research will be performed. The main objectives are: - to realise a lean-burn car for the Euro 3 standards, simultaneously addressing the C02 emission issue. - to realise a DI HD truck engine for the Euro 3 standards, simultaneously addressing the C02 emission issue. The key issues (novel catalyst materials, mechanistics, reducing agent, ageing, design criteria, HC-level strategy) will all be linked together in the program to enable design of the complete system. In order to reach the objectives, basic research performed at some of the leading European Universities (Leuven, Reading, Mulhouse, Bochum, Lund and Abo) will provide an indispensable platform for further development in the vehicle industry (Volvo, BMW, VW, Daimler-Benz, Renault) together with the catalyst manufacturing partner (Heraeus-Asalmaz). Reducing agent injection and mixing for DI diesel engines will be analysed and developed by AVL. The results will be directly implemented in the demonstrators. Prime Contractor: AB Volvo Technological Development, Department 06130, Emission Control and Catalysis; Göteborg; Sweden.
Etwa 5% der Treibhausgasemissionen der Europäischen Union sind auf die Stahlindustrie zurückzuführen. Insbesondere bei der Gewinnung von Rohstahl entstehen erhebliche Mengen an CO2 als Nebenprodukt. Das Fraunhofer IKTS (Institut für Keramische Technologien und Systeme) hat deshalb die Minderung der Emissionen durch elektrolysegestützte Direktreduktion unter Nutzung erneuerbarer Energien untersucht. Gegenwärtig wird Roheisen nahezu ausschließlich über die Hochofenroute hergestellt. Der Sauerstoff aus dem Eisenerz wird dabei mittels Koks reduziert, wobei CO2 entsteht. Eine großtechnische Alternative ist der sog. Direktreduktionsprozess (Direct Reduced Iron - DRI), bei dem zwar ebenfalls CO2 als Nebenprodukt entsteht, allerdings deutlich weniger, weil als Reduktionsmittel Erdgas verwendet wird. Bei der Reaktion entsteht Wasserstoff, der ebenfalls mit dem Sauerstoff des Eisenoxids (zu Wasser) reagiert, wodurch weniger Sauerstoff mit dem Kohlenstoff zu CO2 umgewandelt wird. Zukünftig kann dieser Prozess ohne fossile Energieträger auskommen. Dafür werden die für den Reduktionsprozess entscheidenden Gase (Wasserstoff und Kohlenstoffmonoxid) mittels Hochtemperaturelektrolyse (Solid Oxide Electrolysis) bereitgestellt. Da die Beimischung prozesstechnisch nur bis zu einem Anteil von 70 Vol.-% sinnvoll ist, hat das Fraunhofer IKTS neuartiges Prozesskonzept entwickelt. Sie nutzen die Fähigkeit der Hochtemperaturelektrolyse auch CO2 umzuwandeln. Im Direktreduktionsprozess ohnehin abgetrenntes Kohlenstoffdioxid wird dem Elektrolyseur mit Wasser zugeführt. So entstehen die beiden Reduktionsmittel Kohlenmonoxid und Wasserstoff. Bei gleichem Substitutionsanteil können so die CO2 Emissionen im Vergleich zur reinen Wasserstoffsubstitution noch weiter gesenkt werden, was die benötigte Energiemenge deutlich reduziert. Der Prozesstechnische Grenzwert kann dadurch von 70 auf 85 vol. -% verschoben werden, wodurch noch weniger Erdgas benötigt wird. Große Potenziale für die Klimaschutzziele bietet darüber hinaus die Tatsache, dass bei eine Erdgassubstitution von mehr als 70 vol.-% das gekoppelte System aus Hochtemperaturelektrolyse und Direktreduktionsanlage die Roheisenproduktion sogar als CO2 Senke betrieben werden kann. Damit ist zukünftig auch der komplette Verzicht auf fossile Kohlenstoffträger möglich.
Das Projekt "Chitosan as a wood preservative, the wood technology aspect" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Institut für Holzbiologie und Holztechnologie durchgeführt. The natural durability of pine, spruce, beech and birch is low to medium. To use these species outdoors, a modification of the wood needs to be applied. Up to now, copper, chromium, and arsenic (CCA), and other copper-containing agents have been used for impregnation of wood. These preservatives have a good antifungal effect, but are under environmental discussion. This PhD study focuses on applying chitosan (a derivate from shellfish shell, squid pens ++) as an antifungal agent in pine (Pinus sylvestris), spruce (Picea abies), beech (Fagus sylvatica) and birch (Betula verrucosa/pubescens). Chitosan is an environmentally friendly natural polymer that is nowadays used for different purposes (weight reducing agent, waste water purification, absorbent for heavy metal removal and in medicine. The parameters that will be investigated in this PhD study are: 1. The ability of penetration of chitosan with different chain lengths and different degrees of acetylation in wood. 2. The fixation-process of chitosan to wood, which cross linking agents between chitosan and wood, should be used to prevent leaching. 3. Measuring of the changes in the physical/mechanical properties of wood after impregnation with chitosan. 4. The fire retardant ability. 5. To refine the use of chitosan treated wood in combination with other procedures.
Die Hüttenwerke Krupp Mannesmann GmbH hat mit Datum vom 07.05.2021 einen Antrag auf Genehmigung nach § 16 BImSchG zur wesentlichen Änderung des Integrierten Hüttenwerks durch die Errichtung und den Betrieb einer Anlage zum Ver-dichten von Koksofengas und Einblasen von Koksofengas und Mischgas (Erdgas und Koksofengas) in die Hochöfen A und B auf dem Betriebsgelände Ehinger Straße 200 in 47259 Duisburg gestellt. Gegenstand des Antrages: Das Integrierte Hüttenwerk soll durch die Errichtung und den Betrieb einer An-lage zum Verdichten von Koksofengas und durch das Einblasen von Koks-ofengas und Mischgas (Erdgas und Koksofengas) in die Hochöfen A und B geändert werden. Ein Teil des in der Kokerei anfallenden Koksofengases soll zukünftig als Reduktionsmittel in den Hochöfen eingesetzt werden und so an-dere fossile Reduktionsmittel verdrängen. Hierzu soll eine Koksofengasver-dichteranlage sowie eine Umschaltstation mit Mischern errichtet werden, um je nach Bedarf Erdgas, Koksofengas oder ein Mischgas aus Koksofengas und Erdgas in die Hochöfen einblasen zu können. Eine Leistungserhöhung der Hochöfen ist mit dem Vorhaben nicht verbunden.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Linde GmbH durchgeführt. 1. Vorhabenziel: Ziel des Projekts ist, ein Verfahren bis zu einem Pilotanlagenkonzept zu entwickeln, das Erdgas in Wasserstoff und ein Kohlenstoffprodukt für die Koks- und Eisenherstellung spaltet. Der Wasserstoff wird direkt oder nach CO2-Aktivierung über die RWGS Reaktion zu Synthesegas für die Herstellung von Kraftstoffen und die chemische Industrie genutzt. Die stoffliche Verwertung des Kohlenstoffs als Reduktionsmittel für die Roheisenerzeugung führt durch den Ersatz von Kohle zu einer vorteilhaften CO2-Bilanz des Gesamtverfahrens. 2. Arbeitsplanung: Zentrales Element ist die Konzeption eines optimal energieintegrierten Reaktors zur pyrolytischen Spaltung von Erdgas in Wasserstoff und Kohlenstoff. Die Energieintegration basiert auf dem Gegenstromprinzip mit direkter Wärmeübertragung von den Pyrolyseprodukten auf das Edukt Methan. Der Kohlenstoff ist so zu formulieren, dass er als Alternative für Kokskohle in der Kokerei und als Einblaskohle für den Hochofen verwendbar ist (TKSE, BFI). Für die CO2-Aktivierung werden Katalysatoraktivmassen, -formkörper und Prozesskonzepte entwickelt (BASF, hte, Uni-Do). Die kommerzielle technologische Umsetzung wird in einem verfahrenstechnischen Gesamtkonzept abgebildet (Linde, TK-Uhde). Für die im Anschluss an das Forschungsvorhaben geplante Demonstrationsphase wird ein Pilotanlagenkonzept erarbeitet (BASF, TKSE, TK-Uhde, Linde). Die Ergebnisse werden durch Publikationen und Präsentationen über einschlägige Industrieverbände verbreitet.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von VDEh-Betriebsforschungsinstitut GmbH durchgeführt. 1. Vorhabenziel: Ziel des Projekts ist, ein Verfahren bis zu einem Pilotanlagenkonzept zu entwickeln, das Erdgas in Wasserstoff und ein Kohlenstoffprodukt für die Koks- und Eisenherstellung spaltet. Der Wasserstoff wird direkt oder nach CO2-Aktivierung über die RWGS Reaktion zu Synthesegas für die Herstellung von Kraftstoffen und die chemische Industrie genutzt. Die stoffliche Verwertung des Kohlenstoffs als Reduktionsmittel für die Roheisenerzeugung führt durch den Ersatz von Kohle zu einer vorteilhaften CO2-Bilanz des Gesamtverfahrens. 2. Arbeitsplanung: Zentrales Element ist die Konzeption eines optimal energieintegrierten Reaktors zur pyrolytischen Spaltung von Erdgas in Wasserstoff und Kohlenstoff. Die Energieintegration basiert auf dem Gegenstromprinzip mit direkter Wärmeübertragung von den Pyrolyseprodukten auf das Edukt Methan. Der Kohlenstoff ist so zu formulieren, dass er als Alternative für Kokskohle in der Kokerei und als Einblaskohle für den Hochofen verwendbar ist (TKSE, BFI). Für die CO2-Aktivierung werden Katalysatoraktivmassen, -formkörper und Prozesskonzepte entwickelt (BASF, hte, Uni-Do). Die kommerzielle technologische Umsetzung wird in einem verfahrenstechnischen Gesamtkonzept abgebildet (TKSE, Linde, TK-IS). Für die im Anschluss an das Forschungsvorhaben geplante Demonstrationsphase wird ein Pilotanlagenkonzept erarbeitet (Linde, TK-IS, BASF, TKSE). Die Ergebnisse werden durch Publikationen und Präsentationen über einschlägige Industrieverbände verbreitet.
Origin | Count |
---|---|
Bund | 191 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 186 |
Text | 4 |
Umweltprüfung | 1 |
unbekannt | 2 |
License | Count |
---|---|
closed | 6 |
open | 183 |
unknown | 4 |
Language | Count |
---|---|
Deutsch | 192 |
Englisch | 21 |
Resource type | Count |
---|---|
Archiv | 3 |
Datei | 3 |
Dokument | 6 |
Keine | 146 |
Webseite | 41 |
Topic | Count |
---|---|
Boden | 167 |
Lebewesen & Lebensräume | 164 |
Luft | 154 |
Mensch & Umwelt | 193 |
Wasser | 152 |
Weitere | 189 |