Arbuscular mycorrhizal fungi (AMF) are mutualistic symbionts considered a key group in soil systems involved in the provision of several ecosystem services. Recently they have been listed by EFSA as organisms to be included in the test battery for the risk assessment of plant protection product (PPPs). This study aimed to contribute to improve the ISO Protocol (ISO 10832: 2009) by assessing the feasibility of using other AMF species under different test conditions. Overall, results showed that AMF species Gigaspora albida and Rhizophagus clarus (selected out of five AMF species) are suitable to be used in spore germination tests using the ISO protocol (14 days incubation with sand or artificial soil as substrate) to test PPPs. However, several modifications to the protocol were made in order to accommodate the use of the tested isolates, namely the incubation temperature (28†˚C instead of 24†˚C) and the change of reference substance (boric acid instead of cadmium nitrate). The need for these changes, plus the results obtained with the three fungicides tested (chlorothalonil, mancozeb and metalaxyl-M) and comparisons made with literature on the relevance of the origin of AMF isolates in dictating the adequate test conditions, emphasize the importance of adjusting test conditions (AMF species/isolates and test temperature) when assessing effects for prospective risk assessment targeting different climatic zones. So, further studies should be conducted with different AMF species and isolates from different climatic regions, in order to better define which species/isolate and test conditions should be used to assess effects of a particular PPP targeting a given climatic zone. © Springer Science+Business Media, LLC, part of Springer Nature 2018
The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.Quelle: http://iopscience.iop.org
Das Projekt "Alternativmethoden: Übertragung der Cell Painting Methode auf den E-Morph Assay zur Anwendung im phänotypischen HT/HC Screening umfangreicher Chemikalienbibliotheken (MORPHEUS)" wird vom Umweltbundesamt gefördert und von Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP) durchgeführt. Die Screening Unit (Leitung Dr. von Kries) am Leibniz-Forschungsinstitut für Molekulare Pharmakologie hat einen Test zur Profilierung von Substanzwirkungen und Genfunktionen in Zellkulturen im Hochdurchsatz mit automatisierten Mikroskopen entwickelt. Hierbei können für jede einzelne Zelle bis zu 1.000 morphologische Parameter von fluoreszenz-markierten Zellstrukturen vermessen und automatisch analysiert werden (Cell Painting). Hierfür wurden Referenzsubstanzen benutzt deren Wirkmechanismus bekannt und somit den komplexen Änderungen von morphologischen Mustern der Änderungen zugeordnet werden kann. Diese am FMP etablierte Technologie soll im MORPHEUS-Projekt mit dem am BfR etablierten Test zur hormonabhängigen Änderung der Morphologie von Zellen kombiniert werden und im Resultat Tierversuche reduzieren. Die Screening Unit wird Brustkrebszellen (MCF7) und Leberzellen nach Applikation von Substanzsammlungen mit annotierter und unbekannter Wirkung in diesem Vorhaben profilieren. Der kombinierte Assay wird genutzt um aus insgesamt ca. 3000 Substanzen hormonell aktive Moleküle herauszufiltern und diese weiter zu charakterisieren. Darüber hinaus werden im Rahmen eine proof-of-concept Studie in silico Modelle zur Vorhersage von Substanzwirkungen anhand von molekularen und morphologischen Fingerabdrücken entwickelt. Hierfür werden in einem iterativen Prozess weitere 450 Substanzen aus der FMP Library gescreent um die Vorhersagen zu einzelnen Substanzen experimentell zu überprüfen und die dadurch gewonnenen Erkenntnisse zur Modellverfeinerung verwendet. Die Erkennung von morphologischen Mustern (für spezifische Substanzwirkungen signifikante Änderungen von Messwerten für Zellstrukturen, wie z.B. Zellkern oder Mitochondrien und Membransysteme) soll der Zuordnung von Störungen von Zellfunktionen dienen, die eindeutig auf hormonartige Wirkungen von Substanzen dienen. Diese spezifischen Muster sind für die Diagnostik von Krankheiten und die Entwicklung von Wirkstoffen von Bedeutung.
Das Projekt "Verwertung von PUMA-Produkten" wird vom Umweltbundesamt gefördert und von bifa Umweltinstitut GmbH durchgeführt. Im April 2012 führte PUMA das Rücknahmesystem Bring Me Back ein. Seither können Kunden in PUMA Stores weltweit gebrauchte Produkte zurückgeben, die dann durch die Firma I:CO der Weiterverwendung und Verwertung zugeführt werden. Auch die Produkte der neuen recyclefähigen und biologisch abbaubaren PUMA-InCycle-Kollektion, die seit März 2013 auf dem Markt sind, werden so erfasst. Hierzu gehört etwa das recycelbare PUMA Track Jacket, das zu 98 Prozent aus Polyester aus gebrauchten PET-Flaschen besteht. Der PUMA-Rucksack aus Polypropylen wird nach Gebrauch an den ursprünglichen Hersteller zurückgegeben, der das Material wieder zu neuen Rucksäcken verarbeitet. Durch solche Neuentwicklungen will PUMA seine Planungs- und Entscheidungsbasis verbessern. Deshalb hat sie bifa mit der Analyse abfallwirtschaftlicher Optionen für gebrauchte PUMA Produkte beauftragt. bifa untersuchte hierzu Referenzprodukte und Optionen für die Erfassung und Sortierung von Produkten und Materialien. 35 Pfade mit unterschiedlichen Verwertungs- und Beseitigungsansätzen wurden entwickelt und bewertet. Die Realisierungschancen der Pfade wurden dann dem zu erwartenden Nutzen insbes. für die Umwelt gegenübergestellt. Dabei wurde zwischen gut entwickelten und wenig entwickelten Abfallwirtschaften (Waste-Picking-Szenario W-P-Szenario) unterschieden. Es zeigte sich, dass Pfade, die im Szenario Abfallwirtschaft ökologisch nachteilig sind, im W-P-Szenario durchaus vorteilhaft sein können. Im W-P-Szenario sind zudem Pfade realisierbar, die in entwickelten Abfallwirtschaften keine Chance hätten. Die moderne Abfallverbrennung ist für W-P-Szenarien ökologisch vorteilhaft, aber dennoch eine schwierige Option. In entwickelten Abfallwirtschaften sollten Sammlung und Wiedereinsatz gebrauchter Schuhe und Textilien weiterentwickelt werden. Die folgenden generellen Empfehlungen wurden gegeben: - Der Einsatz von Recyclingmaterialien in PUMA-Produkten ist aus ökologischer Sicht zu empfehlen. Diese Erkenntnis wird auch durch die Ergebnisse der ersten ökologischen Gewinn-und-Verlust-Rechnung von PUMA belegt. Über die Hälfte aller Umweltauswirkungen entlang der gesamten Produktions- und Lieferkette des Unternehmens werden bei der Herstellung von Rohmaterialien verursacht - Das Produktdesign sollte auch für bestehende Verwertungspfade optimiert werden, da realistischerweise nur ein Teil der Produkte über das Sammelsystem erfasst werden kann - Die ökologischen Vorteile von Produkten, die aus nur einem Material bestehen, kommen nur dann zum Tragen, wenn das Produkt nach Gebrauch aussortiert und das Material tatsächlich recycelt wird - Biol. abbaubare Produkte können auch Nachteile haben, zum Beispiel die schnellere Entwicklung von klimaschädlichem Methan bei ungeordneter Deponierung - Eine Verlängerung der Produktlebensdauer über den gesamten Lebenszyklus einschl. der Verwendung als Gebrauchtprodukt ist der effektivste Weg, Umweltlasten zu reduzieren. Meth. Ökobilanzierung und Systemanalyse (Text gekürzt)
Das Projekt "Detoxification von Mykotoxinen in Hefe - Phase II" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Department für Angewandte Genetik und Zellbiologie durchgeführt. Pflanzenpathogene Pilze der Gattung Fusarium verursachen agronomisch bedeutende Krankheiten auf Getreide. Zusätzlich zur Ertragsminderung kommt es dabei zur Kontamination des Erntegutes mit Mykotoxinen. Für die wichtigsten Fusarium-Toxine, das als Proteinbiosynthese-Inhibitor wirkende Deoxynivalenol (DON) und das stark östrogen wirksame Zearalenon (ZON), sind nun nach toxikologischer Evaluierung EU-weite gesetzliche Maximalwerte in Vorbereitung. Die im Feld vom Pilz gebildeten Metaboliten stellen eine Gesundheitsgefährdung für Tier und Mensch dar. Allerdings sind pflanzliche und tierische Zellen (und wahrscheinlich der toxinproduzierende Pilz selbst) in gewissem Ausmaß imstande, die Mykotoxine in ungiftige Konjugate überzuführen. In diesem Projekt sollen die beteiligten Entgiftungsenzyme, die UDP-Glucuronosyl-transferasen (UGT) und Sulfotransferasen (SULT) charakterisiert, sowie die gebildeten Mykotoxin-Konjugate mittels instrumenteller Analysenverfahren untersucht werden. Ziel des Projektes ist es, Bäckerhefe genetisch so zu verändern, dass die Detoxifikationsaktivität von exprimierten UGT- oder SULT-Kandidatengenen phänotypisch beobachtet werden kann, entweder in Form von Wachstum auf gifthältigem Medium, oder mithilfe von geeigneten östrogen-regulierten Reportergenen. Da die Säuger-UGTs im Lumen des endoplasmatischen Retikulums lokalisiert sind und Hefe das Ko-Substrat UDP-Glucuronsäure (UDP-GlcUA) nicht bilden kann, muss allerdings zuerst die Fähigkeit zur Biosynthese von UDP-GlcUA und möglicherweise auch jene zum effizienten Transmembran-Transport bereitgestellt werden. Derartige Stämme und solche, die das Sulfotransferase-Kosubstrat PAPS ('aktives Sulfat') effizient bereitstellen, sollen als Wirtszellen für die funktionelle Expression von humanen bzw. tierischen UGTs, sowie von tierischen und pflanzlichen SULTs dienen. Auch im Genom von Fusarium graminearum identifizierte UGT bzw. SULT-Gene sollen getestet werden. Neben der funktionellen Charakterisierung von heterologen UGT und SULT Genen soll auch getestet werden, ob sich endie hergestellten Hefestämme als Bioreaktoren zur Herstellung von Mykotoxinkonjugaten verwendet werdeneignen. Diese sind als Referenzsubstanzen für die Entwicklung von Analysenmethoden wichtig. Wenn es gelingt, die fremden Entgiftungsenzyme funktionell in Hefe zu rekonstituieren, hätte dies Bedeutung weit über den Aspekt der Mykotoxine hinaus. Ein Satz von Hefestämmen, die jeweils nur ein Detoxifikationsgen exprimieren, wäre generell für das Studium des Metabolismus von Medikamenten und anderen Substanzen sehr nützlich.
Das Projekt "Teilvorhaben: Rezeptur- und Materialentwicklung des Bio-Komposits" wird vom Umweltbundesamt gefördert und von TECNARO Gesellschaft zur industriellen Anwendung nachwachsender Rohstoffe mbH durchgeführt. Die Hauptaufgabe der TECNARO GmbH liegt in der Entwicklung und Bereitstellung des thermoplastischen, faserverstärkten Biocomposites, welches den Anforderungen des Referenzmaterials (PA630GF) und den Bauteilanforderungen, die mit den Projektpartnern erarbeitet werden, entspricht. Für die Material- und Rezepturentwicklung stellt TECNARO seine Materialdatenbank mit über 5000 Rezepturen dem Forschungsprojekt zur Verfügung. Ebenso können drei industrielle Extruder für die Herstellung des Materials bei TECNARO verwendet werden. Die Werkstoffcharakterisierung zur Ermittlung der Materialkenndaten und der Rezepturoptimierung bilden den zweiten wesentlichen Aufgabenbereich von TECNARO. Des Weiteren werden die Verarbeitungsdaten und Parameter zur Herstellung der neuen Werkstoffe erfasst und zur Prozessoptimierung herangezogen. Diese Daten werden mit den oben beschriebenen Materialkenndaten zusammengeführt und zu einem vollständigen Bild des Werkstoffs zusammengefasst. Die Versorgung der Projektpartner mit dem neuen Werkstoff soll durch TECNARO gewährleistet und das industrielle Upscaling aufgezeigt werden. Ziel ist es, Materialien zu entwickeln, welche einen deutlich verbesserten ökologischen Fußabdruck gegenüber den herkömmlichen Werkstoffen aufzeigen. Zu diesem Zweck soll mittels LCA-Analyse der Fußabdruck der neuen Werkstoffe berechnet und im Konsortium mit herkömmlichen Werkstoffen einschließlich aller Verarbeitungsschritte verglichen werden. Ziel ist es, eine vollständige Gegenüberstellung und Vergleichbarkeit zu erreichen.
Das Projekt "Teilvorhaben 2: Schäumung und Werkstoffentwicklung" wird vom Umweltbundesamt gefördert und von Technische Universität München, Campus Straubing für Biotechnologie und Nachhaltigkeit, Lehrstuhl für Biogene Polymere durchgeführt. Das Ziel des Projektes ist die Herstellung eines Produkts zur Wärmedämmung im Bausektor aus Laubholz, bei dessen Herstellung bislang nicht verfolgte Methoden zur Schäumung bei gleichzeitiger Verbesserung des Brandschutzes und der mikrobiellen Stabilität angewendet werden. Das Projekt weist folgende Besonderheiten auf: - Verwendung biogener siliziumhaltiger Additive zur Verbesserung der physikalisch-technischen Eigenschaften (Hydrophobierung), als Brandschutz und zum Schutz vor biogenem Abbau - Vernetzung durch Partikelstabilisierung (Pickering-Stabilisierung) von Holzfaser- und Chemiezellstoffpartikeln - CO2 als Treibmittel der Schäumung - Berücksichtigung der Recyclingfähigkeit bereits beim Produktdesign ('cradle to cradle' Ansatz) - Gesamthafte Bilanzierung der Nachhaltigkeit (Umwelt, Ökonomie, Gesellschaft). Dazu werden zusätzlich zur probenhaften Materialherstellung und der Untersuchung der Recyclingfähigkeit bei den Hochschulpartnern die bautechnischen und physikalischen Eigenschaften in industriegeführten Labors analysiert. Als Referenz-Materialien für die technisch-physikalischen und ökobilanziellen Eigenschaften werden konventionelle Werkstoffe aus Styrodur® (XPS Polystyrol; aufgrund des Zusatzes von Bromverbindungen u.a. als gefährlicher Sondermüll eingestuft), Polyurethan und Nadelholzweichfaserdämmungen einbezogen, die derzeit am Markt als Dämmstoffe für den Außenbereich eingesetzt werden.
Das Projekt "Teilvorhaben 1: Silanisierung und Nachhaltigkeitsbewertung" wird vom Umweltbundesamt gefördert und von Hochschule Weihenstephan-Triesdorf, Fachgebiet für Nachhaltige Betriebswirtschaft, Professur Nachhaltige Betriebswirtschaft durchgeführt. Das Ziel des Projektes ist die Herstellung eines Produkts zur Wärmedämmung im Bausektor aus Laubholz, bei dessen Herstellung bislang nicht verfolgte Methoden zur Schäumung bei gleichzeitiger Verbesserung des Brandschutzes und der mikrobiellen Stabilität angewendet werden. Das Projekt weist folgende Besonderheiten auf: - Verwendung biogener siliziumhaltiger Additive zur Verbesserung der physikalisch-technischen Eigenschaften (Hydrophobierung), als Brandschutz und zum Schutz vor biogenem Abbau - Vernetzung durch Partikelstabilisierung (Pickering-Stabilisierung) von Holzfaser- und Chemiezellstoffpartikeln - CO2 als Treibmittel der Schäumung - Berücksichtigung der Recyclingfähigkeit bereits beim Produktdesign ('cradle to cradle' Ansatz) - Gesamthafte Bilanzierung der Nachhaltigkeit (Umwelt, Ökonomie, Gesellschaft). Dazu werden zusätzlich zur probenhaften Materialherstellung und der Untersuchung der Recyclingfähigkeit bei den Hochschulpartnern die bautechnischen und physikalischen Eigenschaften in industriegeführten Labors analysiert. Als Referenz-Materialien für die technisch-physikalischen und ökobilanziellen Eigenschaften werden konventionelle Werkstoffe aus Styrodur® (XPS Polystyrol; aufgrund des Zusatzes von Bromverbindungen u.a. als gefährlicher Sondermüll eingestuft), Polyurethan und Nadelholzweichfaserdämmungen einbezogen, die derzeit am Markt als Dämmstoffe für den Außenbereich eingesetzt werden.
Das Projekt "Teilvorhaben: Modellierung und Charakterisierung der Anodenstrukturen." wird vom Umweltbundesamt gefördert und von Math2Market GmbH durchgeführt. Zur Steigerung der Energiedichte von Lithium-Ionen-Batterien werden hochkapazitive Elektroden mit hoher Schichtdicke entwickelt. Derartige Elektroden zeigen ein schlechtes Schnellladeverhalten und reduzierte Zyklenstabilität. Das Projekt möchte einen Beitrag zur Auflösung dieses Zielkonflikts leisten. Die Arbeiten konzentrieren sich auf die Anode, da diese als limitierend betrachtet wird. Hierzu werden drei Ansätze zur Strukturierung und Oberflächenmodifikation erforscht: - Gradierung - Laserstrukturierung - Mikroprägen Die Ansätze werden im Labormaßstab erforscht und bewertet. Parallel dazu werden Algorithmen entwickelt, die es erlauben vorteilhafte Elektrodenstrukturen vorauszusagen und die Hauptalterungsmechanismen SEI-Bildung und Lithium-Plating gekoppelt zu beschrieben. Daneben wird ein lichtmikroskopisches Verfahren entwickelt mit dem es möglich ist, den Lade- und Entladevorgang In-situ zu verfolgen und Alterungsmodelle zu validieren. Im Teilvorhaben 'Modellierung und Charakterisierung der Anodenstrukturen' erstellt die Math2Market GmbH virtuelle Zwillinge der Referenzelektroden und Strukturmodelle für neue Elektrodenmaterialien. Die Referenzmaterialien, virtuellen Zwillinge und neuen Materialien werden analysiert und die physikalischen Eigenschaften berechnet. Dadurch können Vorhersagen getroffen werden, mit welchen Anodenmaterialien eine Verbesserung gegenüber dem Referenzmaterial erzielt werden könnte.
Das Projekt "Steigerung der Energie- und Ressourceneffizienz des Recyclings organik-kontaminierter Aluminiumschrotte - Teilprojekt: Thermolyse von Aluminiumschrotten zur Erzeugung von Referenzmaterial für Schmelzversuche sowie Prozessbegleitung" wird vom Umweltbundesamt gefördert und von Hydro Aluminium Rolled Products GmbH, Forschung und Entwicklung durchgeführt. Das Projektziel ist die Verfahrensoptimierung der thermischen Vorbehandlung und des Schmelzens organik-kontaminierter Aluminiumschrotte mit gesteigertem Aluminium-Ausbringen und reduziertem Primärenergiebedarf. Dies soll durch die effiziente energetische Nutzung der Thermolysegase möglich werden, was bisher in industriellen Prozessen nicht erreicht wurde. Die Prozessoptimierung wird durch die grundlegende Bewertung eines Mikrowellendrehrohrofens zur Thermolyse von Aluminiumschrotten, der Entwicklung eines Regelsystems zur Schwachgasverbrennung aus der Thermolyse und dem technischen Vergleich von drei industriellen Schmelzprozessen begründet. Mit der Verfahrensentwicklung und den daraus gewonnenen charakteristischen Kenndaten ist man am Ende des Projekts in der Lage, diese Technologie zu nutzen. Den Anlagenbauern und -betreibern stehen dann die Kenndaten zur Verfügung, um neue Pilot-/Produktionsanlagen auszulegen und marktgerecht zu positionieren.
Origin | Count |
---|---|
Bund | 188 |
Type | Count |
---|---|
Förderprogramm | 186 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 186 |
Language | Count |
---|---|
Deutsch | 173 |
Englisch | 35 |
Resource type | Count |
---|---|
Keine | 107 |
Webseite | 81 |
Topic | Count |
---|---|
Boden | 120 |
Lebewesen & Lebensräume | 154 |
Luft | 118 |
Mensch & Umwelt | 188 |
Wasser | 117 |
Weitere | 188 |