<p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2 ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> für die <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a> der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p><p>Hinweis: Die im Diagramm gezeigten Daten sind in der Publikation "Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2024" zu finden.</p>
This dataset documents a series of analogue experiments designed to investigate the coupled evolution of magma-driven surface uplift and rainfall-driven geomorphic processes. Seven controlled laboratory experiments were conducted, each combining shallow intrusion of a magma analogue with imposed rainfall of varying intensity, in order to systematically explore the role of surface processes under different forcing conditions. The experimental setup consists of a rigid Plexiglas container filled with a water-saturated granular mixture formulated to reproduce brittle crustal behaviour under wet conditions. Magmatic intrusion was simulated by injecting a fixed volume (360 cm³) of low-viscosity polyglycerine through a basal inlet at three distinct injection rates, while surface processes were imposed using an overhead rainfall system delivering three different rainfall intensities. Topographic evolution during each experiment was monitored using a structured-light laser scanner (Artec Leo). For every model run, six Digital Elevation Models (DEMs) were generated at synchronised stages corresponding to 0%, 20%, 40%, 60%, 80% and 100% of the injected volume, yielding a total of 42 DEMs. Raw scans were processed through a triangulated irregular network (TIN) meshing workflow and subsequently rasterised to GeoTIFF format without additional post-processing, in order to preserve the original topographic signal. In parallel, time-lapse photographic documentation was acquired throughout each experiment using a digital camera, providing a complementary visual record of dome growth, surface incision and sediment redistribution. The dataset is organised into two main components: (i) high-resolution topographic datasets (DEMs) and (ii) time-indexed photographic sequences, both linked to the temporal evolution of each experiment. Quality control procedures include scanner calibration prior to acquisition, verification of mesh consistency and raster resolution, and a closed-system experimental design ensuring mass conservation. All data are distributed in their original formats and accompanied by detailed documentation describing experimental procedures, data processing workflows, and file organisation, enabling reproducibility and reuse in quantitative analyses of coupled magmatic and surface processes. This publication results from work conducted under the transnational access/national open access action at University Roma Tre, Laboratory of Experimental Tectonics (LET) supported by WP3 ILGE - MEET project, PNRR - EU Next Generation Europe program, MUR grant number D53C22001400005.
<p>Die privaten Haushalte benötigten im Jahr 2024 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2024 625 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 625 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>.</p><p>Im Zeitraum von 1990 bis 2024 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 4,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 14 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteil der Anwendungsbereiche der privaten Haushalte 2008 und 2024“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um über 40 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteil der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2024“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Im digitalen Seenverzeichnis sind alle nicht berichtspflichten Seen in Schleswig-Holstein zusammengefasst, welche eine Seefläche kleiner 50 ha jedoch i. d. R. größer als 5 ha aufweisen und/oder Teil eines FFH-Gebietes oder ein anerkanntes EU-Badegewässer sind.
Dieser Dienst stellt für das INSPIRE-Thema Geologie aus der geologischen Karte im Maßstab 1:25000 umgesetzte Daten, des Landesamt für Umwelt- und Arbeitsschutz bereit.:Ein Gesteinskörper mit spezifischen Eigenschaften.
Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Anlagen zur Erzeugung von Biogas durch Vergärung von Biomasse. In folgender Datenabfrage sind alle aufgeführten Biomasseanlagen aus dem Marktstammdatenregister (MaStR) der Bundesnetzagentur (BNetzA) für das Saarland aggregiert und nach Hauptbrennstoff dargestellt. Stand: 20.02.2024
Dieser Dienst stellt für das INSPIRE-Thema Verkehrsnetze aus dem Datensatz Wegenetz im saarländischen Wald umgesetzte Daten bereit.:Der Dienst (WMS Gruppe) stellt ins Inspire-Datenmodell „Verkehrsnetze“ transformierte Daten „Wegenetz im saarländischen Wald“ des SaarForst Landesbetriebes bereit.
Zu den Grundlagen der biologischen Bewertung gemäß WRRL gehören das Aufstellen einer Gewässertypologie und die Ausweisung von Gewässertypen. Diese sind elementare Grundlagen für die typspezifische biologische Bewertung, die Ausweisung der Wasserkörper und das Aufstellen eines Monitoring-Netzwerkes. Aber auch die Erstellung der Bewirtschaftungspläne und damit die Maßnahmenplanung erfolgt typspezifisch. In der Ökoregion "Norddeutsches Tiefland" werden insgesamt sieben Seetypen unterschieden, darunter sechs natürliche Typen und ein Sondertyp für künstliche Seen.
Böden sind eine begrenzte Naturressource, die den Schutz einer verantwortungsbewussten und zukunftsorientierten Gesellschaft benötigt. Der Umgang mit Böden wird durch diverse Fachgesetze geregelt. Diese werden durch das Bundes-Bodenschutzgesetz (BBodSchG) und die Bodenschutz- und Altlastenverordnung (BBodSchV) ergänzt. Bundeseinheitliche Rechtsgrundlagen geben die materielle Basis für den Schutz des Bodens sowie für die Bewertung und Sanierung von Altlasten vor. Das Bodenschutzausführungsgesetz des Landes Sachsen-Anhalt (BodSchAG LSA) untersetzt aus Landessicht die Anforderungen und Zuständigkeiten im Hinblick auf den vorsorgenden und nachsorgenden Bodenschutz. Der nachhaltige Umgang mit Böden ist in der Vergangenheit nicht ausreichend beachtet worden und auch heute sind Böden vielfältigen Belastungen ausgesetzt. Insbesondere vor dem Hintergrund eines stetig steigenden Nutzungsdruckes stellt der Bodenschutz eine besondere Herausforderung dar. Wohnungsbau und Gewerbeansiedlung, landwirtschaftliche Produktion, regenerative Energien, Tourismus und Erholung, Rohstoffgewinnung, Straßenbau, Ver- und Entsorgung sowie andere Wirtschaftszweige beanspruchen die Verfügbarkeit von Flächen bzw. Böden. Diese Anforderungen gehen zu Lasten der Qualität und insbesondere Quantität von Böden (Flächenverbrauch) bzw. ihren Bodenfunktionen, die dadurch beeinträchtigt werden oder sogar unwiederbringlich verloren gehen. Um schädliche Bodenveränderungen und Verluste von Bodenfunktionen zu vermeiden und zu minimieren, ist es notwendig, das Schutzgut Boden in der räumlichen Planung und den Abwägungsprozessen der Umweltprüfung nachvollziehbar und angemessen zu berücksichtigen. Bestehende fachliche und methodische Grundlagen des vor- und nachsorgenden Bodenschutzes, d.h. zum Schutz der Böden vor schädlichen Veränderungen, wie z.B. Schadstoffeintrag, Versiegelung, Erosion durch Wasser oder Wind, sowie anderen nachteiligen Einwirkungen und die Altlastenbearbeitung müssen deshalb konsequent umgesetzt und unter Berücksichtigung neuester Erkenntnisse aus Wissenschaft und Forschung weiter entwickelt werden. Dazu ist es erforderlich, Informationen über den Zustand und die Entwicklung der Böden zu erheben, zu sammeln sowie durch geeignete Methoden auszuwerten und darzustellen ( Bodenbeobachtung ). Im Land Sachsen-Anhalt wird dafür ein Netz von Boden-Dauerbeobachtungsflächen (BDF) und ein Bodenschutz- und Altlasteninformationssystem (ST-BIS) betrieben. letzte Aktualisierung: 08.05.2023
| Origin | Count |
|---|---|
| Bund | 7618 |
| Europa | 13 |
| Kommune | 61 |
| Land | 3916 |
| Wirtschaft | 11 |
| Wissenschaft | 189 |
| Zivilgesellschaft | 62 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Chemische Verbindung | 103 |
| Daten und Messstellen | 2270 |
| Ereignis | 124 |
| Förderprogramm | 6116 |
| Gesetzestext | 53 |
| Hochwertiger Datensatz | 261 |
| Lehrmaterial | 4 |
| Text | 1050 |
| Umweltprüfung | 195 |
| unbekannt | 1381 |
| License | Count |
|---|---|
| geschlossen | 2061 |
| offen | 8282 |
| unbekannt | 1150 |
| Language | Count |
|---|---|
| Deutsch | 10780 |
| Englisch | 2588 |
| Leichte Sprache | 1 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 1171 |
| Bild | 38 |
| Datei | 811 |
| Dokument | 1009 |
| Keine | 4864 |
| Multimedia | 2 |
| Unbekannt | 24 |
| Webdienst | 526 |
| Webseite | 5083 |
| Topic | Count |
|---|---|
| Boden | 7301 |
| Lebewesen und Lebensräume | 9349 |
| Luft | 6097 |
| Mensch und Umwelt | 11477 |
| Wasser | 5133 |
| Weitere | 10718 |