Das Projekt "Forest management in the Earth system" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Uncertainty and the bioeconomics of near-natural silviculture" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Waldinventur und nachhaltige Nutzung.Research in 'silviculture' and 'forest economics' very often takes place largely independent from each other. While silviculture predominantly focuses on ecological aspects, forest eco-nomics is sometimes very theoretic. The applied bioeconomic models often lack biological realism. Investigating mixed forests this proposal tries to improve bioeconomic modelling and optimisation under uncertainty. The hypothesis is tested whether or not bioeconomic model-ling of interacting tree species and risk integration would implicitly lead to close-to-nature forestry. In a first part, economic consequences of interdependent tree species mixed at the stand level are modelled. This part is based on published literature, an improved model of timber quality and existing data on salvage harvests. A model of survival over age is then to be developed for mixed stands. A second section then builds upon data generated in part one and concentrates on the simultaneous optimisation of species proportions and harvest-ing ages. It starts with a mean-variance optimisation as a reference solution. The obtained results are compared with data from alternative approaches as stochastic dominance, down-side risk and information-gap robustness.
Das Projekt "Late pleistocene and holocene climate variability and environmental changes in high mountain ranges: document from the closed hala hu (har lake), northern tibetan plateau" wird/wurde gefördert durch: Freie Universität Berlin, Interdisciplinary Center for Ecosystem Dynamics in Central Asia (EDCA). Es wird/wurde ausgeführt durch: Freie Universität Berlin, Interdisciplinary Center for Ecosystem Dynamics in Central Asia (EDCA).
Es sind regionalplanerische Festlegungen des Komplexes Raumnutzung - Verkehr für die deutsch-tschechische grenzüberschreitende Zusammenarbeit der Planungsbehörden dargestellt. Der Datensatz enthält Daten der Planungsregionen Region Chemnitz, Oberes Elbtal-Osterzgebirge und Oberlausitz-Niederschlesien. Entsprechend des Landesentwicklungsplanes 2013 als fachübergreifendes Gesamtkonzept zur räumlichen Entwicklung, Ordnung und Sicherung des Freistaates Sachsen stellen die Regionalpläne einen verbindlichen Rahmen für die räumliche Entwicklung, Ordnung und Sicherung des Raumes dar. Die rechtsverbindlichen Pläne werden in der Regel im Maßstab 1:100.000 erstellt.
Das Projekt "The Water, Energy and Food Security Nexus" wird/wurde ausgeführt durch: Fachhochschule Köln, Institut für Technologie- und Ressourcenmanagement in den Tropen und Subtropen (ITT).In order to understand the interlinked problems in the Nexus (Latin = connection, linkage, interrelation) of water, energy and food security, close cooperation between scientists and practitioners from different fields is necessary. The present and future challenge of a reliable supply with water, energy and food is an example, where isolated considerations do not lead to viable solutions. Sustainable action and meaningful research in these highly interconnected fields require a holistic and comprehensive perspective and a new approach. In this sense, a collaborative research structure with a holistic view on the Nexus of Water, Energy and Food security was established in 2013 at the Cologne University of Applied Sciences. The project bundles some of the research efforts of 11 professors from different faculties and institutes. The researchers jointly work on initiating new cooperation projects with partners from industry, academia and civil society. Together they aim at exploring new technologies and applying new approaches to solve major issues of efficiency and sustainability in resource use.
Das Projekt "Rehabilitation of Degraded Forests in Yunnan (German-Chinese Cooperation for Agrarian Research)" wird/wurde gefördert durch: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Arbeitsbereich für Weltforstwirtschaft und Institut für Weltforstwirtschaft des Friedrich-Löffler-Institut, Bundesforschungsinstitut für Tiergesundheit.Background: An increasing frequency of massive flooding along the lower Yangtse River in China ended in a disastrous catastrophe in summer 1998 leaving several thousand people homeless, more than 3.600 dead and causing enormous economic damage. Inappropriate land-use techniques and large scale timber felling in the water catchment of the upper Yangtse and its feeder streams were stated to be the main causes. Immediate timber cutting bans were imposed and investigations on land use patterns were initiated by the Chinese Government. The Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products was approached by the Yunnan Academy of Forestry in Kunming to exchange experiences and to cooperate scientifically in the design and application of appropriate afforestation and silvicultural management techniques in the water catchment area of the Yangtse. This cooperation was initiated in 1999 and is based on formal agreements in the fields of agrarian research between the German and Chinese Governments. Objectives: The cooperation was in the first step focussing on the identification of factors which caused the enormous floodings. After their identification measures of prevention were determined and put into practice. In this context experiences made in past centuries in the alpine region of central Europe served as an incentive and example for similar environmental problems and solutions under comparable conditions. Relevant key questions of the cooperation project were: - Analysis of forest related factors influencing the recent floodings of the Yangtse, - Analysis and evaluation of silvicultural management experiences from central Europe for know-how transfer, - Evaluation of rehabilitation measures for successful application in Yunnan, - Dissemination of knowledge through vocational training. Results: - Frequent wild grazing of husbandry is a key factor for forest degeneration beyond unsustainable timber harvests, forest fires and insect calamities leading to increased water run-off in the mountainous region of Yunnan; - Browsing of cattle interrupts succession thus avoiding natural regeneration and leaving a logging ban ineffective; - Mountain pasture in the Alps had similar effects in the past in central Europe. The introduction of controlled grazing has led to an ecologically compatible coexistence of pasture and ecology. Close-to-nature forestry can have positive effects in this sensitive environment. - Afforestation with site adopted broadleaves and coniferous tree species was implemented on demonstration level using advanced techniques in Yunnan.
Das Projekt "Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., Institut für Grundwasserökologie.Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.
Das Projekt "Physicochemical Aging Mechanisms in Soil Organic Matter (SOM- AGING): II. Hydration-dehydration mechanisms at Biogeochemical Interfaces" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.Soil organic matter (SOM) controls large part of the processes occurring at biogeochemical interfaces in soil and may contribute to sequestration of organic chemicals. Our central hypothesis is that sequestration of organic chemicals is driven by physicochemical SOM matrix aging. The underlying processes are the formation and disruption of intermolecular bridges of water molecules (WAMB) and of multivalent cations (CAB) between individual SOM segments or between SOM and minerals in close interaction with hydration and dehydration mechanisms. Understanding the role of these mediated interactions will shed new light on the processes controlling functioning and dynamics of biogeochemical interfaces (BGI). We will assess mobility of SOM structural elements and sorbed organic chemicals via advanced solid state NMR techniques and desorption kinetics and combine these with 1H-NMR-Relaxometry and advanced methods of thermal analysis including DSC, TGADSC- MS and AFM-nanothermal analysis. Via controlled heating/cooling cycles, moistening/drying cycles and targeted modification of SOM, reconstruction of our model hypotheses by computational chemistry (collaboration Gerzabek) and participation at two larger joint experiments within the SPP, we will establish the relation between SOM sequestration potential, SOM structural characteristics, hydration-dehydration mechanisms, biological activity and biogechemical functioning. This will link processes operative on the molecular scale to phenomena on higher scales.
Das Projekt "Market Structure and Organization in Agri-Food Value Chains: An Application to the German Dairy Sector" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Agrarentwicklung in Mittel- und Osteuropa.The German dairy value chain is subject to profound structural change resulting in increasingly dominant agents at all stages of the chain, i.e. at the farm level, at the processors' level and at the retailers' level. In particular, the consolidation of retailers has increased retailers' bargaining power vis-à-vis their suppliers. Against this background, the overall objective of this subproject is to analyze the structural change in the dairy sector, particularly at the processors' level, by taking into account firms' strategic interactions along the entire dairy value chain. So far, there exists no theoretical workhorse model that allows for the analysis of interdependencies in a three-layer structure where imperfect competition is considered at all three stages. We aim to close this gap to understand how an increasingly dominant retail industry influences strategic decisions at the dairy processors' level which, in turn, may affect dairy farmers. Building upon a three-layer approach, we first examine whether processors have merger incentives to counter the retailers' bargaining power. We then analyze the differences between cooperatives and for-profit firms concerning their decision on product quality and the number of dairy suppliers. Finally, we assess the implications for upstream farmers which rounds off the picture of structural change in the German dairy sector.
Das Projekt "Stakeholders, Interests and Power as Drivers of Community Forestry: Comparative Analysis of Albania, Germany, Cameroon, Indonesia, Namibia, Nepal and Thailand" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Georg-August-Universität Göttingen, Burckhardt-Institut, Professur für Forst- und Naturschutzpolitik und Forstgeschichte.Community forestry has not met the great public expectations on a significant contribution to sustainable forestry yet. Recent research in the management and policy of community forestry describes a complex process of multi level social choice which determines the outcomes. Our hypothesis is that the key factors determining the outcomes of community forestry are the interests and power of the external stake holders. This hypothesis will be tested in a comparative quantitative and qualitative analysis. In seven countries comprising developed and developing countries 84 cases will be used for comparison. The comparative analysis will be carried out by one PhD student financed by the project. He will do the field work in close cooperation with PhD students who are already conducting their PhD analysis the different countries. The comparative analysis is aimed to explore key drivers of community forestry which are not yet identified in literature.
Origin | Count |
---|---|
Bund | 139 |
Kommune | 1 |
Land | 6 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 137 |
unbekannt | 6 |
License | Count |
---|---|
offen | 142 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 30 |
Englisch | 128 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Keine | 99 |
Webseite | 44 |
Topic | Count |
---|---|
Boden | 131 |
Lebewesen & Lebensräume | 136 |
Luft | 108 |
Mensch & Umwelt | 143 |
Wasser | 110 |
Weitere | 143 |