Das Projekt "PV-H2-Boot Solgenia" wird vom Umweltbundesamt gefördert und von Hochschule Konstanz Technik, Wirtschaft und Gestaltung, HTGW, Institut für Angewandte Forschung , Energiewandlung in Solarsystemen (IAF,EWIS) durchgeführt. 1. Introduction: In view of the increasing problem of energy supply, the University of Applied Sciences Konstanz developed a research boat powered by photovoltaic and fuel cells. The core question of the research project is, if such a combination represents a viable option for recreational and commercial boating. To answer this question, long-time performance-studies of each component by itself and in combination with others in marine environment are necessary. An Information-Management-System (IMS) interfacing to about ninety parameters was developed, providing the basis for analysis. 2. Energy Supply System: The energy supply system consists of two energy conversion units (PV-generator and fuel cell) and two energy storage units (battery and hydrogen tank). A DC/AC-inverter together with an asynchronous motor converts the electrical energy into mechanical energy for the propeller. The voltages between the three fuel cell modules as well as the PV-generator and the battery are adjusted by DC/DC-converters (see figure 1). The hydrogen will be provided by an electrolysis unit within the laboratory driven by a PV-generator and stored on land. One of the research aims is to adapt the hydrogen production depending on solar radiation to the hydrogen demand by the stationary fuel cells (in the laboratory) and the mobile fuel cells (in the boat). 3. Information management system (IMS): The requirements which the IMS has to fulfil are quite complex: 1. a real-time control-system has to operate the boat and process the parameters, 2. a graphical user interface has to provide meaningful and clear information for skipper as well as service and scientist, 3.measured data has to be periodically transmitted to a data bank at the institute for further processing. Use of the Internet gives independence of location. 4. Energy management: Energy management is one of the main tasks of the IMS. One of the research aims is to develop and optimize the management rules. The energy system itself consists of one controllable (fuel cell) and one not controllable energy converter (PV-generator) as well as of two energy storage devices (battery and H2-tank). Parameters affecting the energy management are among others: speed of boat, distance to travel, battery capacity and solar radiation. These parameters are either measured directly or calculated by the IMS. The Solgenia additionally will be used as laboratory unit in teaching: The students shall become familiar with the fundamental problems of managing renewable energies. 5. Graphical user interface: An industrial touch panel PC serves as man-machine-interface. The graphical user interface was divided into two basic groups: skipper and service/scientist. The menu for the latter group was protected by password to prevent an inexperienced skipper from creating any mischief. etc.
Das Projekt "E 4.1: Quality and food safety issues in markets for high-value products in Thailand and Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrar- und Sozialökonomie in den Tropen und Subtropen durchgeführt. The production and marketing of high-value agricultural commodities - such as fruits, vegetables, and livestock products - has been an important source of cash income for small-scale farmers in the northern mountainous regions of Thailand and Vietnam. However, against the background of recent free trade agreements and market liberalization, there is increasing national and international competition, partly leading to significant price decreases. Given structural disadvantages of farmers in northern Thailand and Vietnam, it will be very difficult for them to achieve and maintain a competitive position in markets for undifferentiated high-value products. Therefore, product differentiation - in terms of health attributes (e.g., low-pesticide residues, free from diseases and pathogens), taste (e.g., indigenous livestock breeds), time (e.g., off-season production), or processing characteristics (e.g., packaging, drying, canning) - could be a promising alternative. Quality and safety attributes play an increasing role in domestic and international food trade. The additional value generated could lead to sustainable income growth in the small farm sector, but this potential will only materialize when appropriate institutional mechanisms help reduce transaction costs and allow a fair distribution of benefits. This subproject seeks to analyze how the production and marketing of high-value agricultural products with quality and safety attributes can contribute to pro-poor development in northern Thailand and Vietnam. Quality and safety attributes can only generate value when they directly respond to consumer demand. Furthermore, since they are often credence attributes, the product identity has to be preserved from farm to fork. Therefore, the analysis will cover the whole supply chain, from agricultural production to final household consumption. Interview-based surveys of farmers, intermediate agents, and consumers will be carried out in Thailand, and to a limited extent also in Vietnam. The data will be analyzed econometrically with regard to the structure of high-value markets, trends and their determinants, and efficiency and equity implications of different institutional arrangements (e.g., contract agriculture, supermarket procurement). Since in northern Vietnam, the marketing of high-value products is a relatively recent activity, markets for more traditional crops will be analyzed as well, to better understand the linkages between different cash-earning activities in the semi-subsistent farm households. Apart from their direct policy relevance, the results will contribute to the broader research direction of the economics of high-value agricultural markets in developing countries. Moreover, they will generate useful information for other subprojects of the Uplands Program.
Das Projekt "Effect of weed management strategies on the risk of enteric pathogen transfer into the food chain and lettuce yield and quality" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Organischen Landbau durchgeführt. The risk of pathogen transfer from soil to plant, here: lactuca sativa var. capitata, under organic farming conditions is to be investigated within the scope of the QLIF project. When brute fertilisers are applied during production, a health risk by consuming raw eadibles, as e.g. lettuce, is often discussed because of the demanding high standard of sanitation. The type of fertiliser might promote transfer of Enterobacteriaceae, and among these possibly human pathogens. Splash-effects during rainfall and irrigation as well as transfer of soil particles during mechanical weed control. Risks of the pathogen transfer into lettuce will be examined by use of different fertilisation and weed control management strategies, the latter being compared regarding their effectiveness in reducing pathogen transfer. Different field trials with organic fertilisation will be performed in 2006 and 2007. The contents of Enterobacteriaceae, coliforms and E. coli are used as sanitation indicators for the assessment of the effectivity of weed control strategies. Therefore, the contents will be measured in soil as well as in plants. Furthermore, the quality of lettuce will be acquired by analyses of nutrient composition and morphological measurements.
Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
Das Projekt "Energy Storage for Direct Steam Solar Power Plants (DISTOR)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.
Das Projekt "D 1.2: Reducing alternation and production of off-season fruits in Lychee, Longan and Mango" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. The aim and vision of sub-project D1.2 was and is to encourage hillside farmers to plant erosion resistant fruit trees instead of erosion susceptible annual plants. For that reason, experiments to overcome the irregular bearing behaviour of the three most common fruit tree species in Northern Thailand (Litchi, Longan and Mango) from the first SFB period will be continued in order to make their planting more attractive to the farmers. Considerable progress has been made in D1 during the past 3 years to induce flowers and fruit in Longan trees by the application of KClO3 . With this technique, it was not only possible to induce year around flowers and fruit (off season fruit) but also to overcome the generally rather irregular fruiting behaviour of these trees. A similar technique is now being developed for Mango by using an inhibitor of the bio-synthesis of the plant hormone gibberellin. Only Litchi still resist this kind of manipulation by an 'off season technique' (OST). Great effort will therefore be devoted establishing a similar system for this species as well. Reliably, this can only be done by gaining a much better knowledge of the - most certainly hormonal - regulatory system that governs flower induction in trees. Investigations into the hormonal changes taking place during natural and induced flower induction is, therefore, one of the central objectives in this sub-project, with the goal to better understand the process of flower induction. Until now most of the progress in this area is entirely empirical in nature and a more specific manipulation therefore difficult. While the ability to produce off season fruit all year around and under various weather conditions has brought about a great number of new possibilities, new challenges will still be faced with regard to these methods. These circumstances will affect the whole production chain from the orchard to the market and consumer. In order to better investigate and understand these new situations, a large model experiment with Mango will be set up and problems like tree pruning, water and nutrient demand, phytopathological problems, demand on work force, fruit processing and drying etc. will be investigated by the interdisciplinary co-operation of 8 sub-projects within the SFB. The results obtained during these investigations will be shared with hillside farmers enabling them to take advantage of these new possibilities, which will provide for more reliable yields and allow them to market fruit year around. In general, these new opportunities should encourage farmers to plant more trees and thus reduce erosion. However, to make this system not only reliable and economic but also ecologically and socially beneficial to the society all potential benefits as well as risks have to be evaluated carefully from all different aspects.
Das Projekt "Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI durchgeführt. Objective: The FELICITAS consortium proposes an Integrated Project to develop fuel cell (FC) drive trains fuelled with both hydrocarbons and hydrogen. The proposed development work focuses on producing FC systems capable of meeting the exacting demands of heavy-dut y transport for road, rail and marine applications. These systems will be: - Highly efficient, above 60Prozent - Power dense, - Powerful units of 200kW plus, - Durable, robust and reliable. Two of the FC technologies most suitable for heavy-duty transport applic ations are Polymer Electrolyte FuelCells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wideranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance,SO FC. FELICITAS proposes the development of high power Fuel Cell Clusters (FCC) that group FC systems with other technologies, including batteries, thermal energy and energy recuperation.The FELICITAS consortium will first undertake the definition of the requirements on FC power trains for the different heavy-duty transport modes. This will lead to the development of FC power train concepts, which through the use of advanced multiple simulations, will undertake evaluations of technical parameters, reliab ility and life cycle costs. Alongside the development of appropriate FC power trains the consortium will undertake fundamental research to adapt and improve existing FC and other technologies, including gas turbines, diesel reforming and sensor systems f or their successful deployment in the demanding heavy-duty transport modes. This research work will combine with the FC power trains design and simulation work to provide improved components and systems, together with prototypes and field testing where ap propriate.The FELICITAS consortium approach will substantially improve European FC and associated technology knowledae and know-how in the field of heavv-duty transport.
Das Projekt "SP 1.4 Evaluation of nutrient and pollutant cycles of livestock production systems and manure management systems in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Verfahrenstechnik der Tierhaltungssysteme (440b) durchgeführt. The increasing specialization and intensification of the agricultural food production in the North China Plain is leading to restrictions in nutrients and production cycles at farm and regional levels. As a result, livestock production in the North China Plain is entailing serious environmental negative impacts related to manure surpluses and recycling of nutrients, mainly leading to problems associated with water, soil and air pollution. On the other side higher nutrient demands in the local crops is leading to the purchase of chemical or mineral fertilizers when local or on-farm nutrients are not available. Therefore, the efficient use of organic fertilizers not only depends on their availability in the farms, but also on their nutritional composition. Likewise, soil nutrient requirements and plant physiological needs have to be taken into consideration. Indeed, the closer the nutrient cycles and the lower the environmental negative impacts and farm losses are, the greater the chances for a more sustainable resource use in the North China Plain. In the context of the IRTG, aspects of livestock farming in production systems in terms of widely closed nutrients cycles will be integrated. The material flows in different animal husbandry systems will be analysed and the environmental impacts dependent on livestock farming techniques, farms operability and their respective management will be investigated. The applicability and effectiveness of the technical and organizational measures for the reduction of material losses and, the environmental burdens caused by livestock and manure mismanagement in the North China Plain will be reviewed. The benefits and profits for the local cropping systems as result of the application of organic fertilizers originated from livestock farming will be both, ecologically and economically, evaluated as an alternative to replace the use of mineral fertilizers.
Das Projekt "Impact of Landscape Level Land Use Changes with Study Sites in Nicaragua" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Abteilung Waldinventur und Fernerkundung durchgeführt. The main cause of loss of natural resources in Central America is the advance of the agricultural border (UICN, 2001), demanding more land area to produce the same amount of food, as a consequence of the loss of the productive capacity of the ground and the decrease sources (García 2003), the traditional farming practices as crop in the zones of greater slopes, exaggerated use of agrochemical substances and overpasturing have caused negative impacts on the ecosystems (Córdoba, 2002). At the moment livestock is one of the activities of production that have the biggest share of the regions economy (ILRI, 2004), although at the same time it has been announced one of the main causes of the natural ecosystems transformation, provocing the loss of the agrosystems sustainability (Kaimowitz 1996). Taking into account that the systems of extensive production are coming along with the degradation of natural ressources that exist in the forest, an approach of new technics, that are compatible with livestock production and the conservation of natural ressources become necessary. One of these approaches is the introduction of Silvopastoral technologies (Ibrahim et al. 1999). SilvoPastoral Systems (SPS) constitute an alternative for cattle production, where wooded perennial (trees and/or shrubs) interact with the traditional components (herbaceous covers and animals) under a system of integral handling (Ibrahim, 1996). This is a system of sustainable production that, through transformations that improve the performance in production, generates environmental services when protecting and conserving the sources (Ibrahim et al. 2003). Objectives: Identify land use of SPS by analysing satellite imagery (Lansat TM/ ETM+ and Quickbird). Identify the contribution of SPS to the recovery of forestal coverage and the cabon stock in Nicaragua by the application of GIS (Geographic Informatic Systems). Determine the duration of the carbon fixation in SPS.
Das Projekt "Implementierung des EU-HFKW-Phase - down in Deutschland" wird vom Umweltbundesamt gefördert und von Öko-Recherche. Büro für Umweltforschung und -beratung GmbH durchgeführt. Die Verordnung (EU) Nr. 517/2014 über fluorierte Treibhausgase und zur Aufhebung der Verordnung (EG) Nr. 842/2006 ('F-Gas-VO') gibt seit dem Jahr 2015 mittels des 'Phase-down' eine schrittweise Reduzierung der in der EU verwendeten Mengen an teilfluorierten Kohlenwasserstoffen (HFKW) um 79 % bis zum Jahr 2030 vor. Betrachtungen, in welchem Umfang die gesetzlichen Vorgaben zu einer Durchsetzung von HFKW-Alternativen in den einzelnen betroffenen Sektoren in Deutschland geführt haben, gab es bislang nicht. Dieses Vorhaben beleuchtet den Stand der Umsetzung der F-Gas-VO in Deutschland und analysiert die aktuelle Verwendung von HFKW-Alternativen im Kälte-Klima-Sektor. Zudem zeigen Projektionen die Marktdurchdringung der Alternativen in den Sektoren Gewerbekälte, Industriekälte, Transportkälte sowie der stationären und mobilen Klimatisierung bis zum Jahr 2030, wobei Neu- und Bestandsanlagen betrachtet werden. Alle Daten werden mit Hilfe eines Modells berechnet, wobei detaillierte Annahmen zu den künftigen Verwendungsmengen von HFKW sowie deren Alternativen getroffen wurden. Die Gegenüberstellung der in Deutschland zur Verfügung stehenden HFKW-Verwendungsmengen (SOLL-Mengen) und der projizierten HFKW-Mengen (IST-Mengen) in der Kälte- und Klimatechnik zeigt 2018 über alle Sektoren ein deutliches Überschreiten der insgesamt zur Verfügung stehenden HFKW-Mengen, ausgedrückt in CO2-Äquivalenten. Zwar sinken entsprechend der getroffenen Annahmen die HFKW-Verwendungsmengen im IST-Szenario kontinuierlich, allerdings nicht in ausreichendem Maße, um in den Jahren der Reduktionsschritte das SOLL zu erfüllen. Dabei ist auch zu beachten, dass andere Anwendungen außerhalb der Kälte- und Klimatechnik, wie etwa der Einsatz von HFKW als Schaumtreibmittel, Aerosol, Lösemittel oder Feuerlöschmittel, noch nicht eingerechnet sind. Auch der HFKW-Bedarf für die Umrüstung von Bestandsanlagen ist im Modell nicht berücksichtigt. Daneben wird grundsätzlich angenommen, dass fortlaufend technische Innovationen stattfinden, die zur Verringerung der erforderlichen HFKW-Mengen führen. In den einzelnen Anwendungssektoren stellt sich das Bild sehr unterschiedlich dar: Für viele Sektoren wird eine kontinuierliche Überschreitung der zur Verfügung stehenden HFKW-Mengen projiziert. In der Industriekälte ist jedoch mit einem deutlichen Rückgang der Verwendungsmengen zu rechnen und auch andere Sektoren können nach anfänglichem Überschreiten der Mengen ihren HFKW-Bedarf durch den Einsatz von Niedrig-GWP-Kältemitteln deutlich reduzieren (Flüssigkeitskühlsätze und PKWs). Insgesamt können gemäß diesen Berechnungen die EU HFKW-Phase-down Schritte nur zeitverzögert erfüllt werden.
Origin | Count |
---|---|
Bund | 170 |
Type | Count |
---|---|
Förderprogramm | 170 |
License | Count |
---|---|
open | 170 |
Language | Count |
---|---|
Deutsch | 170 |
Englisch | 135 |
Resource type | Count |
---|---|
Keine | 135 |
Webseite | 35 |
Topic | Count |
---|---|
Boden | 142 |
Lebewesen & Lebensräume | 145 |
Luft | 115 |
Mensch & Umwelt | 170 |
Wasser | 114 |
Weitere | 170 |