Karst aquifers constitute important freshwater resources, but are challenging to manage and to protect, because of their unique hydraulic structure and behaviour, representing continuous challenges for research and development. Karst aquifers are widespread and contribute to freshwater supply of most Mediterranean countries and many cities are supplied by karst water, e.g., Rome, Vienna, Montpellier and Beirut. These land surfaces correspond to the main recharge zones of karst aquifers, which are often hydraulically connected over large areas and are highly vulnerable to contamination. The preparation of the Mediterranean Karst Aquifer Map (MEDKAM) generally followed the workflow used for the World Karst Aquifer Map (WOKAM). A new lithological classification has been developed for the MEDKAM, similar to that of the WOKAM, which groups the geological units into four meaningful hydrogeological units: 1). Karst aquifers in sedimentary and metamorphic carbonate rocks. 2). Karst aquifers in evaporite rocks. 3). Various hydrogeological settings in other sedimentary and volcanic formations (karst aquifers are possibly present at depth). 4). Local, poor and shallow aquifers in other metamorphic rocks and igneous rocks (no karst aquifers present at depth).
Die Karte zeigt die Grundwasserleitertypen der oberflächennahen Gesteine im Maßstab 1:500 000. Die Gesteinseinheiten der Geologischen Übersichtskarte sind in drei Klassen eingeteilt worden, die die wesentlichen Leitereigenschaften beschreiben: Porengrundwasserleiter, Kluftgrundwasserleiter und Grundwassergeringleiter. - Porengrundwasserleiter Diese nicht verfestigten Sedimentgesteine bestehen überwiegend aus den gröberen Kornkomponenten Kies und Sand und weisen ein zusammenhängendes Hohlraumvolumen auf, das je nach konkreter Zusammensetzung zwischen 10 und 35 % des Gesteinsvolumens beträgt. Das Grundwasser kann sich in diesen Gesteinen gut bewegen, ist relativ gleichmäßig verteilt und bildet eine deutlich ausgeprägte Grundwasseroberfläche aus, die durch Bohrungen gut erschlossen werden kann. - Grundwassergeringleiter Gesteine mit sehr geringen effektiven Hohlraumanteilen und dichten Gesteinsmassen können Grundwasser nur in geringem Maße speichern oder weiterleiten. Als solche Grundwassergeringleiter wirken die feinkörnigen Locker- und Festgesteine (tonig, schluffig), aber auch die kaum geklüfteten dichten Vulkanite und Magmatite. Die tonigen Gesteine weisen zwar eine hohe primäre Porosität von über 30% auf, diese steht aber wegen der in ihnen wirkenden kapillaren Kräfte für die Grundwasserbewegung nicht zur Verfügung. - Kluftgrundwasserleiter Diese verfestigten kompakten Gesteine, die überwiegend durch Diagenese von Sedimenten entstanden sind, sind nachträglich durch tektonische Beanspruchung in unterschiedlichem Maße geklüftet und gestört worden. Dieses sekundäre Hohlraumvolumen nimmt nur einen geringen Teil (wenige %) des gesamten Gesteinsvolumens ein, kann aber eine relativ schnelle Bewegung des Grundwassers begünstigen. Das primäre Hohlraumvolumen ist in diesen Gesteinen durch die Diageneseprozesse erheblich reduziert worden. Die hier vorliegende Karte entstand durch eine Umattributierung der Inhalte der "Geologischen Übersichtskarte von Niedersachsen 1 : 500 000" und berücksichtigt somit in der Regel nur einen Tiefenbereich von ca. 2 m unter Geländeoberkante. Informationen über die Eigenschaften tieferliegender Gesteinsschichten sind aus dieser Karte nicht zu entnehmen.
Die Karte zeigt die Grundwasserleitertypen der oberflächennahen Gesteine im Maßstab 1:500 000. Die Gesteinseinheiten der Geologischen Übersichtskarte sind in drei Klassen eingeteilt worden, die die wesentlichen Leitereigenschaften beschreiben: Porengrundwasserleiter, Kluftgrundwasserleiter und Grundwassergeringleiter. - Porengrundwasserleiter Diese nicht verfestigten Sedimentgesteine bestehen überwiegend aus den gröberen Kornkomponenten Kies und Sand und weisen ein zusammenhängendes Hohlraumvolumen auf, das je nach konkreter Zusammensetzung zwischen 10 und 35 % des Gesteinsvolumens beträgt. Das Grundwasser kann sich in diesen Gesteinen gut bewegen, ist relativ gleichmäßig verteilt und bildet eine deutlich ausgeprägte Grundwasseroberfläche aus, die durch Bohrungen gut erschlossen werden kann. - Grundwassergeringleiter Gesteine mit sehr geringen effektiven Hohlraumanteilen und dichten Gesteinsmassen können Grundwasser nur in geringem Maße speichern oder weiterleiten. Als solche Grundwassergeringleiter wirken die feinkörnigen Locker- und Festgesteine (tonig, schluffig), aber auch die kaum geklüfteten dichten Vulkanite und Magmatite. Die tonigen Gesteine weisen zwar eine hohe primäre Porosität von über 30% auf, diese steht aber wegen der in ihnen wirkenden kapillaren Kräfte für die Grundwasserbewegung nicht zur Verfügung. - Kluftgrundwasserleiter Diese verfestigten kompakten Gesteine, die überwiegend durch Diagenese von Sedimenten entstanden sind, sind nachträglich durch tektonische Beanspruchung in unterschiedlichem Maße geklüftet und gestört worden. Dieses sekundäre Hohlraumvolumen nimmt nur einen geringen Teil (wenige %) des gesamten Gesteinsvolumens ein, kann aber eine relativ schnelle Bewegung des Grundwassers begünstigen. Das primäre Hohlraumvolumen ist in diesen Gesteinen durch die Diageneseprozesse erheblich reduziert worden. Die hier vorliegende Karte entstand durch eine Umattributierung der Inhalte der "Geologischen Übersichtskarte von Niedersachsen 1 : 500 000" und berücksichtigt somit in der Regel nur einen Tiefenbereich von ca. 2 m unter Geländeoberkante. Informationen über die Eigenschaften tieferliegender Gesteinsschichten sind aus dieser Karte nicht zu entnehmen.
Karst aquifers constitute important freshwater resources, but are challenging to manage and to protect, because of their unique hydraulic structure and behaviour, representing continuous challenges for research and development. Karst aquifers are widespread and contribute to freshwater supply of most Mediterranean countries and many cities are supplied by karst water, e.g., Rome, Vienna, Montpellier and Beirut. These land surfaces correspond to the main recharge zones of karst aquifers, which are often hydraulically connected over large areas and are highly vulnerable to contamination. The preparation of the Mediterranean Karst Aquifer Map (MEDKAM) generally followed the workflow used for the World Karst Aquifer Map (WOKAM). A new lithological classification has been developed for the MEDKAM, similar to that of the WOKAM, which groups the geological units into four meaningful hydrogeological units: 1). Karst aquifers in sedimentary and metamorphic carbonate rocks. 2). Karst aquifers in evaporite rocks. 3). Various hydrogeological settings in other sedimentary and volcanic formations (karst aquifers are possibly present at depth). 4). Local, poor and shallow aquifers in other metamorphic rocks and igneous rocks (no karst aquifers present at depth).
The WMS GÜK250 (INSPIRE) represents the surface geology of Germany on a scale of 1:250,000. In general, the term “surface geology” refers to geologic formations up to a depth of two meters. However, particularly in the south of Germany, considerable deviations of this concept exist and thicknesses of a couple of hundred meters may be displayed. According to the Data Specification on Geology (D2.8.II.4_v3.0) the geological map provides INSPIRE-compliant data. The GÜK250 (INSPIRE) contains a base layer and an overlay layer which usually represents thin Quaternary deposits. The WMS GÜK250 (INSPIRE) contains correspondingly two layers for the geologic units (GE.GeologicUnit.BaseLayer and GE.GeologicUnit.OverlayLayer). Additionally the WMS comprises layers representing the faults (GE.GeologicFault), marginal position of the ice shield (GE. NaturalGeomorphologicFeature) and quartz veins (GE.GeologicUnit.QuartzVein). The layers are mostly displayed according to the INSPIRE portrayal rules. The geologic units are represented graphically by stratigraphy (GE.GeologicUnit.BaseLayer.AgeOfRocks and GE.GeologicUnit.OverlayLayer.AgeOfRocks, stored in group layer GE.AgeOfRocks) and lithology (GE.GeologicUnit.BaseLayer.Lithology and GE.GeologicUnit.OverlayLayer.Lithology, stored in group layer GE.Lithology). Because INSPIRE doesn’t provide portrayal rules for the genesis (event process und event environment), this display mode is not available compared to the original WMS GÜK250. In case of different geochronologic minimum and maximum ages, e.g. Pleistocene - Holocene, the portrayal is defined by the colour of the geochronologic minimum age (olderNamedAge). The portrayal of the lithology is defined by the rock or rock group representing the main part of the petrographic composition of the geologic unit. For the portrayal of different petrographic main components the corresponding colours are superimposed in a dot pattern. Analogous to the original WMS GÜK250 the petrographic content is represented graphically according to the generic terms of the main components, e.g. clastic sedimentary rock, pure carbonate sedimentary rock or metamorphic rock. In case of the geologic units the user obtains detailed information on the stratigraphy, lithology and genesis via the getFeatureInfo request.
Die Geologische Karte 1:1.000.000 (GK1000) zeigt die Geologie Deutschlands und der angrenzenden Gebiete. Die quartären Einheiten Norddeutschlands und des Alpenvorlands werden genetisch (nach der Entstehungsweise) beschrieben. Die älteren Sedimentgesteine sind nach der Stratigraphie (das Alter der Entstehung) klassifiziert. Die magmatischen Gesteine und die metamorphen (durch Druck und Temperatur veränderten) Gesteine werden nach ihrer petrographischen Zusammensetzung differenziert.
Blatt Schwedt (Oder) zeigt das Norddeutsche Tiefland im Grenzgebiet zwischen Deutschland und Polen. Die Morphologie des Tieflandes ist eiszeitlich geprägt. Da sich z. T. mehrere glaziale Serien der Elster-, Saale- und Weichsel-Kaltzeit überlagern, gestaltet sich die Landschaft formenreich mit einer Vielzahl von Seen. Der Kartenausschnitt wird von Sedimenten des Weichsel-Glazials dominiert, wobei unterschieden wird zwischen: glazilimnischen Beckenschluffen, Oser- und Kames-Sanden, Geschiebemergel/-lehm der Grundmoräne, Aufschüttungen der Endmoräne, fluviatilen und glazifluviatilen Sanden, äolischen Flug- und Dünensanden. Holozäne Ablagerungen, wie Torf der Nieder- und Hochmoore oder Auesedimente, überlagern verstärkt in den Niederungen der Flussläufe von Randow, Oder, Ücker und Ina die glazialen Sedimente. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, fasst ein Überlagerungsschema alle oberflächennahen Überlagerungen übersichtlich zusammen. Zwei geologische Schnitte, beide West-Ost-orientiert, gewähren zusätzliche Einblick in den Aufbau des Untergrundes.
Die Geologische Karte 1:1.000.000 (GK1000) zeigt die Geologie Deutschlands und der angrenzenden Gebiete. Die quartären Einheiten Norddeutschlands und des Alpenvorlands werden genetisch (nach der Entstehungsweise) beschrieben. Die älteren Sedimentgesteine sind nach der Stratigraphie (das Alter der Entstehung) klassifiziert. Die magmatischen Gesteine und die metamorphen (durch Druck und Temperatur veränderten) Gesteine werden nach ihrer petrographischen Zusammensetzung differenziert.
Auf Blatt Flensburg ist der südliche Teil der Halbinsel Jütland abgebildet. Während im Westen die Nordsee mit dem Nordfriesischen Wattenmeer, den Halligen und den Nordseeinseln Amrun, Föhr, Sylt und Rømø erfasst ist, wird am Ostrand der Karte die Ostseeküste mit Eckernförder und Flensburger Bucht sowie der dänischen Insel Als dargestellt. Im Kartenblatt sind neben den Oberflächensedimenten des Festlandes auch die Ablagerungen des rezenten Meeresbodens, des Hallig- und Strandbereichs sowie der Watt- und Marschgebiete erfasst und detailliert untergliedert. Auf die marin-litoralen Faziesbereiche entfallen allein 51 der insgesamt 85 Holozän-Einheiten der Legende. Auf dem Festland treten die holozänen Ablagerungen hinter den pleistozänen Sedimenten der Weichsel- und Saale-Kaltzeit zurück. Sie finden sich nur vereinzelt in den Flussniederungen und Senken (hauptsächlich Moorbildungen). Zu den glazialen Sedimenten, die den Festlandsbereich dominieren, zählen: Geschiebelehm der Grundmoränen, glazifluviatile Sande und Schotter, glazilimnische Beckenschluffe und Flugsande. Dabei lassen sich von Ost nach West Unterschiede in der Sedimentverteilung feststellen. Während im östlichen Teil Jütlands Geschiebelehm der weichselkaltzeitlichen Grundmoräne dominiert, werden im zentralen Teil weite Flächen von weichselkaltzeitlichen Sandern eingenommen. Im Westen Jütlands sind dann vermehrt auch Saale-kaltzeitliche Ablagerungen zu finden. Aufgrund der Geschlossenheit der quartären Deckschicht treten ältere Schichten des präquartären Untergrundes kaum zu Tage. Pliozäner Sand und miozäner Ton sind in regional eng begrenzten Vorkommen nur auf Sylt anstehend. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, gewähren drei Profilschnitte zusätzliche Einblicke in den geologischen Bau des Untergrundes. Das längste Profil beginnt am Nordzipfel der Insel Sylt und kreuzt in südöstliche Richtung die Halbinsel Jütland. Die beiden kürzeren Profilschnitte queren den westlichen Teil Jütlands von Nord nach Süd bzw. von Nordwest nach Südost. In allen drei Profilen wird die Mobilität der Zechstein-Salze im Untergrund deutlich - angeschnitten sind die Salzstöcke von Sieverstedt, Süderbrarup, Waabs-Nord und Süderstapel.
Blatt Lübeck erfasst einen Teil des Norddeutschen Tieflandes, der im Norden und Nordosten von der Kieler Bucht, Lübecker Bucht bzw. Wismarer Bucht begrenzt ist. Die Morphologie und Geologie des Tieflandes ist eiszeitlich geprägt, wobei glaziale Sedimente der Weichsel-Kaltzeit den Kartenausschnitt dominieren. Die Verbreitung glazifluviatiler Sande und Kiese tritt gegenüber den Geschiebelehmen der Grundmoräne zurück. Limnische Ablagerungen der Schmelzwasserseen sind ebenfalls weit verbreitet. Die pleistozänen Ablagerungen werden z. T. von holozänen Sedimenten überlagert. So sind allein unter den quartären Einheiten des Kartenblattes 90 Überlagerungsfälle erfasst. Entlang der Küstenlinie lagern den glazialen Sedimenten mariner Sand und Schlick auf. In den Niederungen des Festlandsbereiches handelt es sich z. B. um Torf der Nieder- und Hochmoore bzw. Auesedimente. Ältere Sedimentgesteine treten nur sehr vereinzelt unter der quartären Deckschicht zu Tage. So sind marine Tone auf Fehmarn (Eozän) und bei Ahrensburg (Miozän) sowie Anhydrit-Vorkommen bei Bad Segeberg (Zechstein) aufgeschlossen. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, gewähren zwei geologische Schnitte einen Einblick in den Aufbau des Untergrundes. Die Profile kreuzen in ihrem West-Ost- bzw. Nordwest-Südost-Verlauf verschiedene Salzstrukturen.
Origin | Count |
---|---|
Bund | 197 |
Land | 85 |
Type | Count |
---|---|
Förderprogramm | 61 |
Kartendienst | 1 |
Text | 50 |
unbekannt | 100 |
License | Count |
---|---|
closed | 63 |
open | 145 |
unknown | 4 |
Language | Count |
---|---|
Deutsch | 203 |
Englisch | 23 |
Resource type | Count |
---|---|
Archiv | 83 |
Bild | 4 |
Datei | 19 |
Dokument | 8 |
Keine | 77 |
Webdienst | 30 |
Webseite | 105 |
Topic | Count |
---|---|
Boden | 212 |
Lebewesen & Lebensräume | 179 |
Luft | 41 |
Mensch & Umwelt | 212 |
Wasser | 111 |
Weitere | 208 |