API src

Found 84 results.

Hydrogen for clean urban transport in Europe (HyFleet:CUTE)

Das Projekt "Hydrogen for clean urban transport in Europe (HyFleet:CUTE)" wird vom Umweltbundesamt gefördert und von Mercedes-Benz Group AG durchgeführt. Im Projekt HyFLEET:CUTE wurde 47 Busse in 10 Städten auf drei Kontinenten eingesetzt (Amsterdam, Barcelona, Berlin, Hamburg, London, Luxemburg, Madrid, Perth, Peking und Reykjavik). Das Projekt zielte darauf ab, Antriebskonzepte für Stadtbusse zu demonstrieren und weiterzuentwickeln, die Wasserstoff als Kraftstoff nutzen. Ferner wurden die damit einhergehenden Produktions- und Verteilungspfade für nachhaltig erzeugten Wasserstoff erprobt. Durch die Entwicklung verbrauchsoptimierter Wasserstoffbusse hat das Projekt dazu beigetragen, den Energieverbrauch im Transportsektor zu reduzieren und zu diversifizieren. Obendrein konnte es Wege einer sauberen, effizienten und sicheren Wasserstoffversorgung und -verteilung vermitteln. Von den eingesetzten Bussen besaßen 33 einen Elektromotor, der mit Strom aus einer Brennstoffzelle angetrieben wurde. Die anderen 14 Busse hatten einen Verbrennungsmotor, der an den Kraftstoff Wasserstoff angepasst war. Im Laufe des Projekts wurde ferner ein neuer Brennstoffzellen-Hybrid-Bus entwickelt, getestet und im Alltagsbetrieb demonstriert. Weiteres Kernelement des Projektes war die Optimierung der bestehenden Wasserstoff-Infrastrukturen, die aus dem Vorläuferprojekt CUTE stammten, sowie die Entwicklung und Erprobung neuer Anlagen und Versorgungskonzepte. Der Wasserstoff wurde an den einzelnen Standorten auf verschiedene Weise bereitgestellt: in manchen Städten durch Herstellung direkt an der Tankstelle ('on site) mittels Elektrolyse oder Reformierung, in anderen Städten per Lkw aus externer Produktion. So konnten verschiedene Pfade der Produktion und Verteilung bewertet werden. HyFLEET:CUTE umfasste außerdem den Betrieb von zwei stationären Brennstoffzellen, die an der Tankstelle in Berlin elektrischen Strom und Wärme bereitstellten. In HyFLEET:CUTE haben 31 Partner aus Politik, Industrie und Wissenschaft kooperiert, um die Entwicklung der Wasserstofftechnologie voranzubringen. Das Projekt war auch Teil der Initiative 'Wasserstoff für Mobilität (Hydrogen for Transport), die alle verkehrsbezogenen Demonstrationsvorhaben der Europäischen Kommission in diesem Bereich beraten und koordiniert hat. Die Aufgaben von PLANET PLANET war für die Bewertung der Leistungsfähigkeit der Wasserstoff-Tankstellen verantwortlich und konnte so an die erfolgreichen Arbeiten im Vorgängerprojekt CUTE anschließen. Zu den wichtigsten Indikatoren, die aus den täglichen Betriebsdaten der 10 Standorte zu ermitteln waren, gehörten Wirkungsgrade und Verfügbarkeiten. Daraus wurden die 'kritischen Komponenten ermittelt, die z.B. an mehreren Standorten bzw. wiederholt zu Ausfallzeiten führten. In Zusammenarbeit mit den Projektpartnern wurden Maßnahmen zur Optimierung entwickelt und Empfehlungen für zukünftige Systeme abgeleitet. PLANET leitete ferner die weltweiten Aktivitäten für Aus- und Weiterbildung. Ziel war es, die Ergebnisse und Erfahrungen aus HyFLEET:CUTE an potentielle Nutzergruppen weitezugeben. usw.

Forest dynamics following windthrow in 10 forest districts in Bavaria

Das Projekt "Forest dynamics following windthrow in 10 forest districts in Bavaria" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fachgebiet Geobotanik durchgeführt. The storms Vivian and Wiebke, that crossed Central Europe in early spring 1990 (26.2. to 1.3. 1990) destroyed many forest stands in Bavaria. In order to obtain information about the development of natural and planted tree regeneration and vegetation development following windthrow more than fifty permanent observation plots were established in the more heavily affected forest regions of Bavaria. The first record took place in 1991, the second in 1995, and the third in 2000. Data of the development of ground layer vegetation and tree regeneration were recorded together with information on site conditions and structure of the stands. Final analysis of the data will start after finishing the year 2000-record.

STEREO: An operational model of the effects of stock structure and spatio-temporal factors on recruitment

Das Projekt "STEREO: An operational model of the effects of stock structure and spatio-temporal factors on recruitment" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. STEREO is an EU-funded project which is joined by 6 partners from 5 countries: UK, Iceland, Norway, Denmark and Germany. The overall objective of STEREO is to improve the methodology for determining limit reference points for the biomass of exploited fish stocks. Limit reference points set boundaries which are intended to constrain harvesting within safe biological limits, and are integral components of the decision making process in fisheries management. STEREO will produce an operational scheme for refining spawning biomass and recruitment data by integrating biological, spatial and temporal information on the stock, with the aim of reducing the uncertainty associated with biological limits. The methodology will be developed for cod and haddock stocks around Iceland, Norway and in the North Sea as case studies. The main goal of STEREO is to produce a model of stock composition and distributional effects on the reproductive output of cod and haddock. One sub-module of this stock composition model is a particle tracking model for egg and larval dispersal which needs input data on circulation and hydrography. The Institute of Oceanography, University Hamburg, is the responsible task leader for the hydrodynamic modelling around Iceland, Norway and in the North Sea. In order to provide the particle tracking model with input data, our institute applies a three-dimensional circulation model (HAMSOM) to the northeast Atlantic and a one-dimensional mixed-layer model to the areas around Iceland, Norway and Scotland.

AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface

Das Projekt "AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.

Improving and Applying Methods for the Calculation of Natural and Biogenic Emissions and Assessment of Impacts on Air Quality (NATAIR)

Das Projekt "Improving and Applying Methods for the Calculation of Natural and Biogenic Emissions and Assessment of Impacts on Air Quality (NATAIR)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. This project aims to improve methods for the calculation of natural and biogenic emissions from various sources and the assessment of impacts on air quality policy implementation. Air pollutants from natural und biogenic sources contribute to ambient air concentrations in the same way as anthropogenic emissions, however, the uncertainty of the estimation of these natural and biogenic emissions is much higher than for anthropogenic emissions. At the same time, with anthropogenic emissions currently decreasing due to emission control activities in many sectors, the relative importance of other sources increases. Thus, it is essential to develop new and improve existing methods for the quantification of emissions from natural and biogenic sources and to use new and improved input data. The project takes into account the latest research results on air pollutant emissions and their impacts, covering all relevant substances (NOx, SOx, NH3, PM, NMVOC; CH4, CO, DMS) from natural and biogenic sources in Europe, e.g. the results from the 'Nature Panel' within the UNECE Task Force Emission Inventories and Projection, and includes anthropogenic emissions officially reported to EMEP by countries. Furthermore, the National Reports for the NEC directive for SOx, NOx, NH3 and NMVOC will be taken into account, as well as the results of EU research projects such as NOFRETETE or the results from the EUROTRAC Subproject GENEMIS. Satellite data will be used e.g. for the improvement of calculations from forests in general as well as forest fires in particular. In order to assess the impacts of emissions from natural and biogenic sources on air quality policy implementation, the project is designed to advance the current state-of-the-art in methodology for the calculation of natural and biogenic emissions. This includes the analysis of temporal and spatial variabilitys and the assessment of uncertainties and sensitivities. In addition, the influence of the improved natural and biogenic emissions on the concentration of pollutants calculated with atmospheric models will be analysed using the model CHIMERE. Finally, policy strategies that are currently under discussion within the EC CAFÉ programme and in the frame of the UNECE CLRTAP to reduce anthropogenic emissions will be analysed in the view of these new results.

Tsunami Risk ANd Strategies For the European Region (TRANSFER)

Das Projekt "Tsunami Risk ANd Strategies For the European Region (TRANSFER)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The project main goal is to contribute to our understanding of tsunami processes in the Euro-Mediterranean region, to the tsunami hazard and risk assessment and to identifying the best strategies for reduction of tsunami risk. Focus will be posed on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro- Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro-Mediterranean countries. The main items addressed by the project may be summarised as follows. The present Europe tsunami catalogue will be improved and updated, and integrated into a world-wide catalogue (WP1). A systematic attempt will be made to identify and to characterise the tsunamigenic seismic (WP2) and non-seismic (WP3) sources throughout the Euro-Mediterranean region. An analysis of the present-day earth observing and monitoring (seismic, geodetic and marine) systems and data processing methods will be carried out in order to identify possible adjustments required for the development of a TEWS, with focus on new algorithms suited for real-time detection of tsunami sources and tsunamis (WP4). The numerical models currently used for tsunami simulations will be improved mainly to better handle the generation process and the tsunami impact at the coast (WP5). The project Consortium has selected ten test areas in different countries. Here innovative probabilistic and statistical approaches for tsunami hazard assessment (WP6), up-to-date and new methods to compute inundation maps (WP7) will be applied. Here tsunami scenario approaches will be envisaged; vulnerability and risk will be assessed; prevention and mitigation measures will be defined also by the advise of end users that are organised in an End User Group (WP8). Dissemination of data, techniques and products will be a priority of the project (WP9). Prime Contractor: Alma Mater Studiorum-Universita di Bologna; Bologna, Italy.

Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling

Das Projekt "Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Backgrond: The mild climate of north western Europe is, to a large extent, governed by the influx of warm Atlantic water to the Nordic Seas. Model simulations predict that this influx and the return of flow of cold deep water to the Atlantic may weaken as a consequence of global warming. MOEN will assess the effect of anthropogenic climate change on the Meridional Overturning Circulation by monitoring the flux exchanges between the North Atlantic and the Nordic Seas and by assessing its present and past variability in relation to the atmospheric and thermohaline forcing. This information will be used to improve predictions of regional and global climate changes. MOEN is a self-contained project of the intercontinental Arctic-Subarctic Ocean Flux (ASOF) Array for European Climate project, which aims at monitoring and understanding the oceanic fluxes of heat, salt and freshwater at high northern latitudes and their effect on global ocean circulation and climate. MOEN will contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas from direct and continuous measurements in order to allow an assessment of the effect of anthropogenic climate change on the Meridional Overturning Circulation. This we will be done by measuring and modelling fluxes and characteristics of total Atlantic inflow to the Nordic Seas and of the Iceland-Scotland component of the overflow from the Nordic Seas to the Atlantic. General objectives: To contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas. To assess the effect of anthropogenic climate change on the Meridional Overturning Circulation. Modelling objectives (WP4, IfM): To model the flow field, the temperature and salinity distribution and the heat fluxes for an area focused on the Iceland-Faroe Ridge, the Faroe Bank and Faroe-Shetland Channel and Wyville-Thomson Ridge. To model long term variations of the locally induced and far field circulation and T/S distribution in order to understand climate variations.

Global Monitoring for Environment and Security (GMES) - GSE Forest Monitoring in Russia (Stage I)

Das Projekt "Global Monitoring for Environment and Security (GMES) - GSE Forest Monitoring in Russia (Stage I)" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Geographie, Abteilung Geoinformatik und Fernerkundung durchgeführt. This GSE-FM service option provides a powerful tool for effective forest monitoring and inventory at regional scale using both EO-data and ground based observations. It is especially designed for allocating reliable and up-to-date information over large forest areas. Many regions of the world like wide parts of Russia and the Irkutsk Oblast are covered by vast forests. The countries and administrative regions often have to deal with pressing environmental problems such as frequent forest fires events, illegal logging practices as well as other human activities and natural forest disturbances. Due to the large forest areas, which are often difficult to access or characterized by insufficient infrastructure and severe climate conditions, frequent monitoring of the forest resources is a great challenge. Forest monitoring by the means of ground inventories is rather complicated or even impossible. The use of aerial photographs is also often insufficient and cost-intensive. As a result, forest information available today, often does not correspond to the current situation. This is true for wide parts of Siberia, for example. However, according to their own legislation and to fulfill international obligations up-to-date and reliable information on forest resources are essential. For instance, in order to update the Russian State Forest Account as well as for forest management and monitoring issues an annual update of forest information is obligatory. The use of EO-technologies offers an excellent tool to obtain spatial forest information. Especially for regions covered by vast forest areas the combined use of high and low resolution EO-data is the most promising and cost-efficient strategy. Therefore, this GSE-FM service option follows a two-level strategy: Level 1: Low and medium resolution satellite data are used for operational monitoring of forest changes over large areas caused by fires, cutting, and other natural and human induced disturbances. Territories where significant changes occurred are identified at this level. Level 2: Both high-resolution satellite data and aerial photos are used for a detailed inventory of all candidates registered by the first level observations. Ground truth data (inventory maps, topography, archive EO data etc.) are used in addition.

Sustainable Water management Improves Tomorrow's Cities'Health (SWITCH)

Das Projekt "Sustainable Water management Improves Tomorrow's Cities'Health (SWITCH)" wird vom Umweltbundesamt gefördert und von Ingenieurgesellschaft Prof. Dr. Sieker mbH durchgeführt. Context: With increasing global change pressures, and due to existing limitations, and un-sustainability factors and risks of conventional urban water management (UWM), cities experience difficulties in efficiently managing the ever scarcer water resources, their uses/services, and their after-use disposal, without creating environmental, social and/or economic damage. In order to meet these challenges, SWITCH calls for a paradigm shift in UWM. There is a need to convert adhoc actions (problem/incident driven) into a coherent and consolidated approach (sustainability driven). This calls for an IP Approach. Research conceptSWITCH therefore proposes an action research project which has as a main objective: The development, application and demonstration of a range of tested scientific, technological and socio-economic solutions and approaches that contribute to the achievement of sustainable and effective UWM schemes in 'The City of the future'.The project will be implemented by different combinations of consortium partners, along the lines of seven complementary and interactive themes. The research approach is innovative for the combination of: action research: address problems through innovation based upon involvement of users.learning alliances: to link up stakeholders to interact productively and to create win-win solutions along the water chain; multiple-way learning: European cities learn from each other and from developing countries, and vice versa.multiple-level or integrated approach: to consider the urban water system and its components (city level) in relation to its impacts on, and dependency of, the natural environment in the river basin (river basin level), and in relation to Global Change pressures (global level).Instruments and scopeAn IP with 30 partners, their resources, and a total budget of 25,191,396 EURO including budget for demonstration activities in 9 Cities in Europe and developing countries. Prime Contractor: UNESCO - Institute for Water Education, Delf, Netherlands.

Integrated Health, Social and Economic Impacts of Extreme Events: Evidence, Methods and Tools (MICRODIS)

Das Projekt "Integrated Health, Social and Economic Impacts of Extreme Events: Evidence, Methods and Tools (MICRODIS)" wird vom Umweltbundesamt gefördert und von evaplan GmbH durchgeführt. Recent events such as the Pakistan earthquake, Hurricane Katrina, the Indian Ocean tsunami and the European heat waves of 2003 reveal the vulnerability of societies to extreme events. The goal of this project is to strengthen prevention, mitigation and preparedness strategies in order to reduce the health, social and economic impacts of extreme events on communities. The objectives of the MICRODIS project are to strengthen the scientific and empirical foundation on the relationship between extreme events and their impacts; to develop and integrate knowledge, concepts, methods and databases towards a common global approach and to improve human resources and coping capacity in Asia and Europe through training and knowledge sharing. This integrated project involves 19 partners from Asia and Europe, including research, policy and ground roots institutions. The outputs will include an evidence-base on impacts, field methodologies and tools for data compilation, impact models, and integrated vulnerability assessments. It will also strengthen standardised data collection of extreme events and their impacts at local, regional and global levels. Prime Contractor: Université Catholique de Louvain; Louvain-la-neuve; Belgium.

1 2 3 4 57 8 9