The project aims at achieving a better understanding of the processes that drive or limit the response of grassland systems in a world of increasing atmospheric pCO2. We will test the hypothesis that the previously shown increase in below-ground allocation of C under elevated pCO2 provides the necessary energy excess and will stimulate free-living N2 fixers in a low N grassland environment. The project thus aims at assessing the occurrence and importance of free-living N2 fixers under elevated pCO2 and identify the associated microbial communities involved in order to better understand ecosystems response and sustainability of grassland systems. This project had the last opportunity to obtain soil samples from a grassland ecosystem adapted to long-term (10 year) elevated atmospheric pCO2 as the Swiss FACE experiment. The project aims to identify the relevant components of free-living diazotrophs of the microbial community using 15N stable isotope - DNA probing.
In contrast to their advances in other areas, weather forecast models have not been successful in improving the Quantitative Precipitation Forecast during the last 16 years. One reason for this stagnation is the lack of comprehensive, high-quality data sets usable for model validation as well as for data assimilation, thus leading to improved initial fields in numerical models. Theoretical analyses have identified the requirements measured data have to meet in order to close the gaps in process understanding. In field campaigns, it has been shown that the newest generation of remote sensing systems has the potential to yield data sets of the required quality. It is therefore time to combine the most powerful remote sensing instruments with proven ground-based and airborne measurement techniques in an Intensive Observations Period (IOP). Its goal is to serve as a backbone for the SPP 1167 by producing the demanded data sets of unachieved accuracy and resolution. This requires a sophisticated scientific preparation and a careful coordination between the efforts of the institutions involved. For the first time, the pre-convective environment, the formation of clouds and the onset and development of precipitation as well as its intensity will be observed in four dimensions simultaneously in a region of sufficient size. This shall be achieved by combining the IOP with international programs and by collaboration between leading scientists in Europe, US and other countries. Thus, the IOP is a unique opportunity to make Germany the setting of an international field campaign featuring the newest generation of measurement systems such as scanning radar and lidar and leading to outstanding advances in atmospheric sciences.
Based on a better understanding of terrestrial and freshwater biodiversity and ecosystem functioning ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative direct and indirect human impacts. Research will focus on assessment and forecast of changes in biodiversity and in structure, function, and dynamics of ecosystems. This relates to ecosystem services and includes the relationship between society, economy and biodiversity. In particular, risks arising from climate change, environmental chemicals, biological invasions and pollinator loss in the context of current and future European land use patterns will be assessed. There is an increasing number of case studies on the environmental risks subsequent to each of these impacts. This yields an improved understanding on how these act individually and affect living systems. Whereas the knowledge on how they act in concert is poor and ALARM will be the first research initiative with the critical mass needed to deal with such aspects of combined impacts and their consequences. So far the ALARM consortium combines the expertise of 54 partners from 26 countries (19 EU, Bulgaria, Romania, Israel, Switzerland, Russia, Chile, and Argentina). Within this call we propose to include 16 new TTC partners from Russia, Belarus, China, South-Africa, India, Croatia, Ukraine, Serbia & Montenegro, The Philippines, Bolivia, Guatemala, and Mexico, in order to complement expertise and geographical coverage of the existing consortium.
The overall objective of ERAP harm is to improve and complement existing knowledge and procedures for the environmental risk assessment (ERA) of human and veterinary pharmaceuticals. Based on EU regulatory frameworks on the ERA of pharmaceuticals and on the outcome of previous projects ERAP harm will address the following aspects: It will investigate previously unstudied major routes leading to exposure of the terrestrial and aquatic environment and subsequent fate of pharmaceuticals in surface water and sediment. Factors and processes affecting the behavior of pharmaceuticals in the environment will be studied on the laboratory, semi-field and fieldscale. A scenario-based exposure assessment system will be developed for predicting concentrations of pharmaceuticals in soils, surface waters and sediments and leaching to groundwater. It will be investigated if environmentally relevant concentrations of pharmaceuticals pose a risk to aquatic and terrestrial organisms. Pharmaceuticals and selected transformation products will be screened using in vitro and low complexity bioanalytical tests in order to provide a first hazard characterization and to target higher tier testing. Higher tier test methods will be improved and applied for detecting the effects of long-term, low-level exposure to pharmaceuticals on aquatic and terrestrial invertebrates and fish. It will be evaluated if information on pharmaco- and toxicodynamics in mammalian species can be used to predict effects of pharmaceuticals on environmental organisms. Moreover, the effects of antibiotics on microbial communities will be studied with a main focus on the spread of genetically encoded resistance. Based on the developed approaches recommendations will be provided on how to improve the ERA procedures for pharmaceuticals. A guidance document will be compiled that will be made available to regulators, industry and the scientific community.
With a focus on transport, the project intends to increase the understanding among relevant actors of the benefits of environmental technologies for a wider application of these technologies. It will build on the ETAP actions on targeted training and awareness raising. Pursuing this aim, the following support activities will be undertaken: 1) conceptualising and organising of 3 workshops with relevant stakeholders for stock taking, identifying obstacles and possible solutions as well as best practice examples; 2) organising a concluding conference on the basis of experiences made in the course of the project (to produce recommendations); intended for senior executives within the sector in order to ensure that the learning from the project is communicated at a level that can help to ensure as broad a take-up and dissemination as possible. 3) Producing Background Notes and Policy Briefs on training needs and awareness raising. The Background Notes will serve as a basis for the Conference discussions; the Policy Briefs will disseminate the projects findings and recommendations beyond the project to a wider public. 4) Specifying a low-cost, easily disseminated e-learning solution that addresses the overall objective of the project: increasing awareness amongst those working in this sector of underlying issues and dilemmas as well as of solutions and good practice. This activity also includes recommendations for routines to maintain the awareness and competence in order to ascertain continuous, long-term effects of the efforts.
Communications, data and information exchange are the key elements of the operational ocean monitoring and forecasting networks, defined in the Global Ocean Observing System (GOOS). Development of observing and closely related operational forecasting system in the Black Sea region requires the exchange of significant data and information volumes. ASCABOS is designed to strengthen the communication system ensuring flexible and operative infrastructure for data and information exchange between partners and end users. ASCABOS aims to increase public awareness and to stimulate and motivate the utilization of operational oceanographic information in management and decision-making practices. In the same time, high level of the operational services must be built and retained. ASCABOS will support achievement of these crucial objectives by initiating an educational and training programme designed for young scientists and wide spectrum of end users. Considerable work has been performed on compiling meta-databases on the Black Sea environmental data, information and research within previous international initiatives and projects. To support and to strengthen the exchange between scientists, governmental managers and other users ASCABOS is planning to combine experiences and instruments in order to develop a Black Sea information system, containing all available metadata, validated and efficiently updated through the Internet. ASCABOS plans to organize and realize a cost-effective VOS pilot programme, applying modern technologies and developments for data collection, transmission, storage, use and dissemination. The VOS programme will provide data for model assimilation and respond to the GOOS demand for long-term monitoring of the marine ecosystems. Prime Contractor: Institute of Oceanology - Bulgarian Academy of Sciences; Varna, Bulgaria.
Climate change over the next 100 years will likely have a range of direct and indirect effects on the natural and material environment, including the historic built environment. Important changes will include alterations in temperature, precipitation, extreme climatic events, soil conditions, groundwater and sea level. Some processes of building decay will be accelerated or worsened by climate change, while others will be delayed. The impacts on individual processes can be described, but it is difficult to assess the overall risk posed by climate change using currently available data . Linking global changes to the response of material surfaces of archaeological and historic structures remains a challenge. The objectives of the NOAH'S ARK Project are: - To determine the meteorological parameters and changes most critical to the built cultural heritage. - To research, predict and describe the effects of climate change on Europe's built cultural heritage over the next 100 years. - To develop mitigation and adaptation strategies for historic buildings, sites, monuments and materials that are likely to be worst affected by climate change effects and associated disasters. - To disseminate information on climate change effects and the optimum adaptation strategies for adoption by Europe's cultural heritage managers through a conference and guidelines. - To provide electronic information sources and tools, including web-based Climate Risk Maps and a Vulnerability Atlas for heritage managers to assess the threats of climate change in order to visualize the built heritage and cultural landscape under future climate scenarios and model the effects of different adaptation strategies. - To advise policy-makers and legislators through the project's Policy Advisory Panel. The results will allow the prediction of the impact of climate and pollution on cultural heritage and investigation of future climate scenarios on a European scale.
The proposal suggests the organisation of the 7th EC Conference on Cultural Heritage Research in Prague, in 2006. The scope of the project stems from the SSP priorities, and the conference aims at the consolidation and impact assessment of results achieved in EU research projects related to movable and immovable cultural heritage, with a special focus on exploitation and spin-off of cultural heritage research results and testing of the acceptability of new sustainability approaches and new technologies by the user community, SMEs, owners, managers and restorers or conservationists of the cultural heritage. The Prague conference has been designed to further define the role of Europes cultural heritage research within the international context and as part of international cooperation, to explore the possibilities for SMEs in contributing to competitiveness and job creation, to define the support of cultural heritage research to policy needs and to contribute to the 7th Framework Programme establishment through support of the European Construction Technology Platform concept and research infrastructure development. The wider public will be addressed by means of special accompanying events, too, in order to ensure feedback and response from non-professional stakeholders. The Conference will consist of sessions dealing with political exploitation and public dissemination of cultural heritage research, the international role of European cultural heritage research, poster displays and verbal presentations of policy impact assessment, research infrastructure achievements, innovative applications and new ideas, as well as coordination of national education and research into cultural heritage issues. Public and professional awareness shall be increased by special demonstration and post-conference activities, including publication of the Conference Proceedings. The results and continuing activities will be supported by IT tools and follow-up working groups, after the event.
Differenzierung der Quellen- und Senkenfunktion des Bodens unter Berücksichtigung der Nutzungsgeschichte. Im Rahmen des CARBOEUROFLUX-Projekts wurden im Hainich (Thüringen) Kohlenstoff (C)- Speicherungsraten festgestellt, die der Vorstellung der Kohlendioxid-Neutralität von alten Wäldern widersprechen und die Frage nach deren Kyoto-Relevanz aufwerfen. Im Rahmen europäischer Projekte lässt sich allerdings nicht klären, wie diese hohen Speicherraten entstehen und wo C im System verbleibt. Wir vermuten, dass durch historischen C-Export, z.B. infolge von Streunutzung, die Böden im Hainich verarmten und die entleerten Speicher jetzt wieder aufgefüllt werden. Um das Ausmaß des nutzungsbedingten C-Exports abschätzen zu können, werden aus Schriftquellen Art und Umfang der Biomassenutzung in ihrer zeitlichen und örtlichen Entwicklung rekonstruiert. Zudem untersuchen wir, welche Anteile des C-Eintrages veratmet, gespeichert und über den Wasserpfad exportiert werden. Hierzu werden 13C und 14C- Isotopenverhältnisse an Bodengasen sowie gelöstem und festem Boden- C bestimmt. Unsere Untersuchungen zielen auf ein grundlegendes Verständnis der C-Speicherung im Jahresverlauf ab. Die Zusammenarbeit mit dem Kompetenzzentrum 'Dynamik Komplexer Geosysteme' und dem europäischen CARBOEUROPE Cluster wird die Doppelerhebung von Daten verhindern und deren gegenseitige Verfügbarkeit sicherstellen. Ziel der Arbeit ist es, den historischen Kohlenstoffexport insbesondere unter Berücksichtigung der forstlichen Nebennutzung abzuschätzen. Hierzu soll anhand von Literaturdaten einerseits die Vegetationsgeschichte geklärt werden. Andererseits soll der im Untersuchungsgebiet im Zuge der forstlichen und landwirtschaftlichen Nutzungen erfolgte Biomasseentzug nach Art und Umfang dokumentiert werden. Diese Arbeiten sind notwendig, um den Einfluss der Nutzungsgeschichte auf die Kohlenstoffspeicherung im Untersuchungsstandort abzuschätzen. Im Rahmen des Gesamtprojektes sollen zunächst Daten zur Entwicklung der Biomasse im Untersuchungsgebiet zusammengestellt werden. Eine weitere Aufgabe besteht darin, auf der Basis von Literaturstudien einen möglichen Vergleichsstandort mit unterschiedlicher Nutzungsgeschichte zu identifizieren.
Recent events such as the Pakistan earthquake, Hurricane Katrina, the Indian Ocean tsunami and the European heat waves of 2003 reveal the vulnerability of societies to extreme events. The goal of this project is to strengthen prevention, mitigation and preparedness strategies in order to reduce the health, social and economic impacts of extreme events on communities. The objectives of the MICRODIS project are to strengthen the scientific and empirical foundation on the relationship between extreme events and their impacts; to develop and integrate knowledge, concepts, methods and databases towards a common global approach and to improve human resources and coping capacity in Asia and Europe through training and knowledge sharing. This integrated project involves 19 partners from Asia and Europe, including research, policy and ground roots institutions. The outputs will include an evidence-base on impacts, field methodologies and tools for data compilation, impact models, and integrated vulnerability assessments. It will also strengthen standardised data collection of extreme events and their impacts at local, regional and global levels. Prime Contractor: Université Catholique de Louvain; Louvain-la-neuve; Belgium.
| Origin | Count |
|---|---|
| Bund | 84 |
| Type | Count |
|---|---|
| Förderprogramm | 84 |
| License | Count |
|---|---|
| offen | 84 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 79 |
| Resource type | Count |
|---|---|
| Keine | 53 |
| Webseite | 31 |
| Topic | Count |
|---|---|
| Boden | 77 |
| Lebewesen und Lebensräume | 83 |
| Luft | 68 |
| Mensch und Umwelt | 84 |
| Wasser | 69 |
| Weitere | 84 |