API src

Found 416 results.

Related terms

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Heterogende Eisnukleation ausgelöst durch poröse Materialien

Das Projekt "Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Heterogende Eisnukleation ausgelöst durch poröse Materialien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bielefeld, Fakultät für Chemie, Arbeitsgruppe Physikalische Chemie II.Die Nukleation von Eispartikeln spielt eine wichtige Rolle bei der Wolken- und Niederschlagsbildung, mit Konsequenten für die atmosphärische Chemie, die Wolkenphysik und das Erdklima. Für eine Quantifizierung und Vorhersage des Einflusses von Wolken in Wettervorhersage- und Klimamodellen muss die Bildung von Eispartikeln daher in einer realistischen Art und Weise beschrieben werden. Einer der wichtigen Bildungsmechanismen ist dabei die heterogene Eisnukleation im Immersionsmodus, bei dem Eis an der Oberfläche eines in einem wässrigen Tröpfchen suspendierten Eiskeims - zum Beispiel eines Mineralstaub- Partikels - gebildet wird. Wir werden im Rahmen dieses Forschungsprojekts zahlreiche Gefrierexperimente im Immersionsmodus durchführen. So werden eine Reihe verschiedener, als Aerosolpartikel in der Atmosphäre vorkommende Materialien auf ihre Eisnukleationseigenschaften hin untersucht werden. Insbesondere sollen hier die Temperatur- und Zeitabhängigkeit der von diesen Materialien ausgelösten Eisnukleation quantifiziert werden. Dabei werden wir spezielles Augenmerk auf die systematische Untersuchung der von porösen Materialien ausgelösten Eisnukleation legen. Es sollen sowohl synthetische Materialien wie beispielsweise mesoporöse Silikate untersucht werden, als auch natürlich vorkommende Materialien wie etwa mikroporöse Zeolithe.

Flugstaubeintrag und seine Wirkung auf die Bodenbildung im waldfreien Karst der Nördlichen Kalkalpen

Das Projekt "Flugstaubeintrag und seine Wirkung auf die Bodenbildung im waldfreien Karst der Nördlichen Kalkalpen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Institut für Geographie.Die Untersuchungsgebiete liegen in den alpinen bis nivalen Höhenstufen der Nördlichen Kalkalpen. Dort existieren auf verkarsteten Kalken (CaCO3-Gehalte größer 96 Prozent) unterschiedliche Entwicklungsstufen der humusreichen Rendzina (A-C-bzw. O-C Profile) sowie verbraunte und braune Bodentypen (A-B-C-Profile). Alle Böden, besonders die braunen Varianten, weisen allochthone Glimmer, Silikate und Schwerminerale auf. So wird der Einfluß von Flugstäuben auf die Solumbildung evident. Aus diesem Sachverhalt resultieren als Forschungsschwerpunkte die rezente Flugstaubdynamik und die dadurch beeinflußte Bodengenese auf Kalkstein. Im Rahmen des geplanten Projekts ergeben sich folgende Kernfragen: 1. Wie sind die Flugstäube durch die beeinflußten Böden in den einzelnen Höhenstufen verbreitet? Welche Geofaktoren steuern die räumliche Verteilung? 2. Wieviel Flugstaub wird rezent (Größenordnung, (mm/a) eingetragen? Welche Hauptliefergebiete gibt es? Wie korrelieren Staubmenge und Solummächtigkeit? 3. Wie verändern die Stäube die Böden? Welchen Anteil haben autochthone Terrae fuscae, allochthone Braunerden und Mischformen? Welche Divergenzen und Konvergenzen der Bodenbildung gibt es in den einzelnen Untersuchungsgebieten? Gibt es Anhaltspunkte für mögliche Bildungszeiträume eine Alterseinstufung der Böden?

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Biogeochemistry: Microbial element cycling as a driver of soil formation

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Biogeochemistry: Microbial element cycling as a driver of soil formation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie.Phosphorus (P) solubilization in soils is a crucial process for ecosystem nutrition and ecosystem development. Previous research on biogenic P solubilization focused on single microbial strains, but little is known about P solubilization as a process of soil formation and ecosystem development. The general objective of the project is to gain understanding on how microbial and plant mediated P solubilization and silicate weathering influence the formation of soil and its P forms. For this purpose, we will quantify the rates of P solubilization and of silicate weathering in a sequence of soils on granites of different stages of development in the coastal range of Chile. We aim at determining mechanisms of microbial P solubilization such as the release of protons and organic acid anions, the factors controlling P solubilization, and the abundance of P-solubilizing bacteria at different stages of soil development. The rates of P solubilization and silicate weathering will be related to soil P fractions (Hedley fractions) that have formed during pedogenesis. We will test the hypothesis that mechanisms, rates, controlling factors and abundances of P-solubilizing bacteria strongly change during soil development. The main value of the project will be that it relates microbial P solubilization taking place at a time scale of several weeks to the development of soils and P fractions taking place over hundreds of years.So far, it is not known how microbial activity in soil affects soil formation in different soil depths and under different climatic conditions. The overarching aim of the project proposed here is therefore to study how microbial cycling of C, N, P and Si affects soil formation. For this purpose, we will, first, study microbial biomass, microbial respiration, and the age of total organic C and respired C in soil and saprolite along a climate gradient in the Costal Cordillera of Chile. Second, we aim at quantifying non-symbiotic N2 fixation along the climate gradient, and at understanding the factors that limit N2 fixation, microbial respiration and silicate weathering. We will test the hypotheses (i) that microbial respiration in the saprolite that advances weathering is fueled by young organic matter, (ii) that CO2 concentrations in saprolite are positively correlated with the net primary production, and that (iii) N2 fixation is strongly limited by water availability along the climate gradient in the Costal Cordillera of Chile. In order to test these hypotheses, we will quantify microbial biomass in 10 m deep saprolite cores taken from four study sites along the climate gradient, and we will quantify the age of total organic C and respired C based on radiocarbon dating. Furthermore, we will quantify N2 fixation in incubations with 15N-N2. Finally, we will synthesize and model the results on biogenic weathering and microbial C, N, P, and Si cycling along the climate gradient in the Costal Cordillera that have been collected during the first a

Neue Verfahren zur Behandlung asbesthaltiger Abfaelle

Das Projekt "Neue Verfahren zur Behandlung asbesthaltiger Abfaelle" wird/wurde gefördert durch: AsbestEx GmbH. Es wird/wurde ausgeführt durch: Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Angewandte Geowissenschaften.Die von uns in Laborversuchen und grosstechnisch durchgefuehrte thermische Behandlung, bei der die Temperaturen innerhalb der Sintergrenze liegen, ist ein energiesparendes und kostenguenstiges Verfahren, bei dem die Asbestfasern voellig zerstoert werden. Als Endprodukt entstehen asbestfreie Oxide und Silikate, z.T. mit hydraulischen Eigenschaften, die als Zuschlaege fuer Baustoffe, feuerfestkeramische Massen u.a. wieder verwertet werden koennen. Eine Vermehrung durch Zugabe z.B. von Bindemitteln findet nicht statt, sondern generell eine Reduktion von Gewicht und Volumen. Es entstehen keine Sonderabfaelle oder andere zu deponierende Materialien, sondern z.T. hochwertige Sekundaerrohstoffe. Deponieraum und neue Altlasten werden vermieden. Ziel ist es, den zu entsorgenden Asbest restlos zu vernichten. Ansaetze, dies durch thermische Behandlung zu erreichen, beduerfen der Vervollkommnung und weiteren Erprobung im grosstechnischen Massstab.

Aufklaerung des Verhaltens von Schadstoffen in Pedo- und Hydrosphaere

Das Projekt "Aufklaerung des Verhaltens von Schadstoffen in Pedo- und Hydrosphaere" wird/wurde gefördert durch: Siemens AG. Es wird/wurde ausgeführt durch: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Technische Chemie, Bereich Wasser- und Geotechnologie, Technische Mineralogie.Geochemische Fixierung von Schadstoffen in Speichermineralen. Untersuchung der Bildungsbedingungen und Struktur von Erdalkalisilikaten, die als Speichermineral geeignet sein koennen: Synthese und Strukturmodell, das die Ableitung thermodynamischer Daten erlaubt. Ermittlung der Mineralneubildungen bei Verwitterung schadstoffhaltiger Rueckstaende zur Identifikation potentieller Speicherminerale fuer Schadstoffe: Zeitrafferexperimente der Verwitterung von Hochtemperatur-Muellverbrennungsschlacken und Untersuchung der Mineralneubildungen aus schwefelhaltigen Rueckstaenden. Untersuchung der Verwendung von Natriumkarbonatsodalith als technische Base zur Inertisierung.

HILLSCAPE (Chronosequenzen an Hängen und deren Prozessentwicklungen)

Das Projekt "HILLSCAPE (Chronosequenzen an Hängen und deren Prozessentwicklungen)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozesse ist jedoch noch rudimentär. Einige der Bodeneigenschaften sind zeitlich stabil, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Diese Veränderungen sind besonders markant auf der Hangskala, wo laterale und vertikale Prozesse über unterschiedliche Zeitskalen miteinander interagieren. Wasser und Vegetation beeinflussen die oberirdischen und unterirdischen Prozesse an Hängen auch über die Verwitterung, die Bodenentwicklung und die Erosion. Diese Prozesse wiederum beeinflussen auch die Fließwege des Wassers. Die daraus resultierende Verteilung der Wasserspeicher beeinflusst die Artenverteilung und Funkrionalität der Vegetation, wobei die Vegetation selber wiederum die Fließwege des Wassers beeinflusst. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher noch kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) soll sich mit der Frage beschäftigen, wie sich dieser Feedback-Zyklus in einem Zeitraum von 10000 Jahren verändert und was für strukturelle Veränderungen daraus resultieren. Das Projekt konzentriert sich dabei auf die vertikale und laterale Umverteilung von Wasser und Stoffen an Hängen und ihrer Wechselwirkungen mit dem Boden, der Vegetation und der Landschaftsentwicklung. Um dieses ehrgeizige Ziel erreichen zu können, wird sich HILLSCAPE Hang-Chronosequenzen auf Moränenstandorten zu Nutze machen. Gletschervorländer liefern uns so Schnappschüsse der zeitlichen Entwicklung. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt dabei den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen instrumentiert. Die Aufgliederung in 5-6 Flächen pro Altersklasse ermöglicht es uns, eine große Bandbreite an Vegetationsbedeckung und -komplexität abzudecken. Wir werden gezielt relevante Strukturen aller 48 Hangflächen aufnehmen und werden deren hydrologische und geomorphologische Funktionsweise und Prozesse einerseits über ein Jahr beobachten und andererseits durch künstliche Beregnung in kontrollierten Experimenten genauer aufschlüsseln. Zusätzlich werden wir funktionalen Eigenschaften der Pflanzen und somit die strukturelle und funktionale Diversität der Standorte erfassen. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Deformationsmechanismen in Sedimenten kurz vor Eintritt in einen Subduktionskomplex zu flachen seismischen Bewegung

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Deformationsmechanismen in Sedimenten kurz vor Eintritt in einen Subduktionskomplex zu flachen seismischen Bewegung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehr- und Forschungsgebiet für Neotektonik und Georisiken.Erdbeben vorherzusagen ist enorm schwierig, jedoch sind solche Vorhersagen für unsere Gesellschaft wichtig, um die Risiken abzuschwächen, die von Erdbeben ausgehen. Durch immer besseres Erkennen der großen Vielfalt seismischer Ereignisse, die von massiven, zerstörerischen Beben wie etwa dem 2004 Sumatra Beben, bis zu langsamen Beben reicht, erhöht sich der Anspruch die geologischen Ursachen hinter Erdbeben zu verstehen. Deshalb wurde in der IODP Expedition 362 die Bengal/Nicobar Fächersequenz bis in die ozeanische Kruste erbohrt und beprobt, um die Materialien zu untersuchen, die in die Subduktionszone gelangen und dort zu extremen Beben beitragen werden. Das Sumatrabeben ist von spezieller Bedeutung, da es näher als vermutet am Tiefseegraben auftrat, was zu einem besonders starken Beben und Tsunami beitrug. Ein kürzlich veröffentlichter Artikel argumentiert, dass das flache Beben im Offshore-Bereich Sumatras durch diagenetisches Verfestigen von tief versenkten störungsbildenden Sedimenten verursacht wurde. Dieses Verfestigen wird mit kompletter Entwässerung der Silikate vor der Subduktion in Verbindung gebracht, was konventionellen Modellen widerspricht. Um zum besseren Verständnis dieser atypischen flachen seismischen Bewegung beizutragen, schlagen wir vor, die Mirko- und Poren-Strukturen von Kernproben, die während der Expedition in LN2 gefroren wurden, zu charakterisieren um (1) Anomalien in den Mikrostrukturen zu erkennen, die in Kombination mit Daten zu seismischen und physikalischen Eigenschaften, auf Horizonte zukünftiger Störungslokalisierung und Bildung von Abscherflächen hinweisen und (2) Deformationsmechanismen während der Versenkung und kleinmaßstäbliche Faltung zu erkennen, die helfen werden, die mechanischen Eigenschaften der Gesteine von ihrer derzeitigen Position in den Sumatra-Subduktions-Komplex zu extrapolieren. Um diese Zielvorgaben zu erreichen, werden wir zunehmend verfestigte und wenig deformierte Proben, die vor Ort unter kryogenen Bedingungen genommen wurden (d.h. keine Veränderung der Struktur durch Austrocknen des Probenwassers) und mehrere langsam getrocknete Proben mit (kryogenem) Broad Ion Beam Polieren und (kryogener) Rasterelektronenmikroskopie untersuchen. Wir werden diese Ergebnisse mit Mikrostrukturen von Kernproben vergleichen, für die die Spannungs-Verformungs-Kurve im Labor gemessen wird, um Hypothesen zu testen, wie die Sedimentsäule auf zusätzliche Versenkung oder Scherung reagiert, die sie in der Subduktionszone erfährt.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Untersuchung einer möglichen Beziehung zwischen tektonischen und klimatischen Entwicklungen: Eozäne-Oligozäne Chronologie des Südwest Pazifiks

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Untersuchung einer möglichen Beziehung zwischen tektonischen und klimatischen Entwicklungen: Eozäne-Oligozäne Chronologie des Südwest Pazifiks" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachbereich 05: Geowissenschaften, Fachgebiet Marine Geophysik.IODP Expedition 371 (Tasman Frontier Subduction Initiation and Paleogene Climate, 27. Juli bis 26. September 2017) hat 2506 m kretazische bis pleistozäne Sedimente an sechs neuen Lokationen erbohrt. Hauptziel der Expedition ist die genaue Datierung seismischer Reflektoren im Gebiet der Tasmansee und Nord-Zealandia, die für das mittlere Eozän eine großräumige konvergente Deformation mit Aufschiebungen und Hebungen nachweisen. Im ausgehenden Eozän/Oligozän wurde diese von einer beträchtlichen ( größer als 1 km) Subsidenz abgelöst, welche als Vorläufer der beginnenden Tonga-Kermadec-Subduktion angesehen wird. Möglicherweise steht dieser grundlegende tektonische Regimewechsel in kausaler Beziehung mit der globalen Klimaabkühlung nach dem Klimaoptimum des frühen Eozäns (EECO). Entscheidend könnte hierbei sein, dass der tektonische Regimewechsel mit einer signifikanten pCO2-Abnahme einherging und somit die beobachtete weltweite Abkühlung bewirkt haben könnte.Im hier beantragten Vorhaben sollen Sedimentserien des Eozän und Oligozän untersucht werden. Primäre Ziele dieses Projekts sind (1) die Entwicklung einer auf Polaritätsumkehr basierenden Chronostratigraphie der IODP Exp. 371 und Cadart-Kernbohrung (Zentral-Neukaledonien), und (2) die Datierung der tektonischen Entwicklung des Südwestpazifiks anhand der neuen Chronostratigraphie. Erste magnetische Messungen an Bord konnten belegen insbesondere an den Sites U1507, U1508, und U1511, dass die paläomagnetischen Informationen vertrauenswürdig sind und sich für Polaritäts-Magnetostratigraphie eignen.Sekundäres Ziel des Vorhabens ist (3) eine genaue Erfassung der Hämatitgehalte in den eozänen Sedimenten des Tasmanbeckens, um die Raten der chemischen Verwitterung auf dem australischen Kontinent zu rekonstruieren. Vorläufige Daten von Bohrung U1511 (Tasman-Tiefseeebene) zeigen eine relative Anreicherung des, dem australischen Kontinent entstammenden, sedimentären Hämatits während des frühen Eozäns, gefolgt von dessen Abnahme im nachfolgenden Mittel- und Späteozän. Laut Dallanave et al. (2010, Geochem. Geophys. Geosyst. 11(7)) bilden die Variationen des detritischen Hämatiteintrags die Intensität der chemischen Verwitterung im Ursprungsgebiet der Sedimente wirksam ab. Die chemische Verwitterung von Silikatmineralen, gefolgt von mariner Karbonatablagerung, ist der einzige Langzeitmechanismus, der den atmosphärischen CO2-Gehalt puffern und somit die globale Durchschnittstemperatur modulieren kann. Daher sollen in diesem Projekt die während Exp. 371 erbohrten Sedimente genutzt werden, die Intensität der chemischen Verwitterung an Land in Zeiten globalen Klimawandels zu erfassen.Erst der in diesem Projekt geplante integrale Datensatz wird ein vollständiges Bild der tektonischen und klimatischen Entwicklung auf einer gemeinsamen Zeitbasis schaffen und Licht in die Zusammenhänge zwischen Großtektonik und Globalklima werfen.

Schwebstoff-Tracer-Untersuchungen

Das Projekt "Schwebstoff-Tracer-Untersuchungen" wird/wurde ausgeführt durch: GKSS-Forschungszentrum Geesthacht, Standort Geesthacht, Institut für Chemie.Es sollen Transport- und Austauschvorgaenge an Schwebstoffen und Sedimenten durch Einsatz von Tracern untersucht werden. Die Untersuchungen sollen sowohl im Modell als auch in Feldversuchen durchgefuehrt werden. Eingesetzt werden sollen geeignete Radiotracer und aktivierbare Tracer in Form von Metalloxiden, Silikaten und organischen Verbindungen.

Erprobung der FT-IR Spektroskopie zur Auswertung von Stickstoff/Kohlenstoff, Phosphat/Kohlenstoff und Silizium/Kohlenstoff-Verhältniswerten in ausgewählten Phytoplanktonzellen

Das Projekt "Erprobung der FT-IR Spektroskopie zur Auswertung von Stickstoff/Kohlenstoff, Phosphat/Kohlenstoff und Silizium/Kohlenstoff-Verhältniswerten in ausgewählten Phytoplanktonzellen" wird/wurde gefördert durch: Bundesanstalt für Gewässerkunde. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Biologie I, Abteilung Pflanzenphysiologie.

1 2 3 4 540 41 42