Studie zeigt Einsparmöglichkeiten bei der Gebäudekühlung In Zukunft könnten Gebäude mit deutlich weniger Strom gekühlt werden. Bis zum Jahr 2030 ist eine Einsparung um 38 Prozent möglich. Das ist das Ergebnis einer vom Umweltbundesamt (UBA) in Auftrag gegebenen Studie. „Es gibt schon heute zahlreiche bewährte Maßnahmen, die verhindern, dass sich ein Gebäude aufheizt. Und in vielen Fällen ist gar keine aktive Kühlung mit einer Klimaanlage nötig.“ sagt UBA-Präsident Jochen Flasbarth. Zu diesem Ziel führen Kombinationen aus unterschiedlichen Maßnahmen, die den Kühlbedarf senken, erneuerbare Energien einbinden und den verbleibenden Strombedarf möglichst effizient decken. Jede damit eingesparte Kilowattstunde Strom verringert die CO2-Emissionen, schont das Klima und den Geldbeutel. Der Stromverbrauch für die Kühlung von Gebäuden beträgt derzeit etwa 21 Terawattstunden ( TWh ). Das sind rund vier Prozent des gesamten Stromverbrauchs in Deutschland. Bis zum Jahr 2030 könnte der Verbrauch entweder bis auf 29 TWh steigen oder aber auf 13 TWh sinken, wenn stromsparende Maßnahmen konsequent umgesetzt würden. Selbst bei einem unwahrscheinlich heißen Klima wäre es möglich, den Stromverbrauch für Gebäudekühlung leicht zu verringern. Um das zu erreichen, sollte der Einbau einer Kühlung nicht gleich an erster Stelle stehen. Zunächst muss der Bedarf an Kühlung verringert werden: durch den Verzicht auf großflächige Verglasung, außenliegenden Sonnenschutz oder eine intensive Nachtlüftung zur Nachtauskühlung und eine gute Wärmespeicherfähigkeit der Wände und Decken. Hinzu kommen solare Kühlung oder Erdkälte für die Kühlung der Luft, der Böden oder der Decken. Erst wenn das nicht ausreicht, sollten effiziente Kältemaschinen in Kombination mit Flächenkühlung genutzt werden. Das könnte beispielsweise mit sogenannten Kühlsegeln passieren - abgehängte Teilbereiche der Decken, die mit Wasser kühlen. In der Regel sind individuelle Konzepte, die Maßnahmenbündel für Lüftung, Heizung und Kühlung umfassen, unabdingbar. Einfluss auf den Stromverbrauch hat auch das Verbraucherverhalten: Wenn etwas höhere Raumtemperaturen ohne Kühlung akzeptiert werden, kann dies deutlich zur Senkung des Strombedarfs beitragen. Die Untersuchungen erstreckten sich nicht nur darauf, den Stromverbrauch zu verringern, sondern auch auf die entstehenden Kosten: Sonnenschutz nachzurüsten ist bei Bürogebäuden mit großen Fensterflächen meist wirtschaftlich. Die Kühlung mit Erdsonden von Wärmepumpen, die im Winter der Wärmeerzeugung dienen, hat sich in den untersuchten Fällen als rentabel erwiesen. Solare Kühlung ist dagegen teuer. Wirtschaftlich vertretbar ist der Einbau einer Lüftungsanlage für die Nachtauskühlung, die gleichzeitig die Raumluftqualität verbessert und im Winter Heizenergie einspart.
Das Projekt "Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.
Das Projekt "Untersuchung der Photochemie von Sauerstoffspezies in der Mesopausenregion" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Institut für Physik durchgeführt. Atomarer Sauerstoff (O) ist eine der Hauptkomponenten der Mesopausenregion der terrestrischen Atmosphäre. Er spielt für die Energiebilanz der Mesopausenregion eine entscheidende Rolle, da er aufgrund seiner langen Lebensdauer chemische potentielle Energie über große Distanzen transportieren kann und indirekt an der Strahlungskühlung dieser Höhenregion beteiligt ist. Darüber hinaus steht er in direktem Zusammenhang mit Ozon, was wiederum für die diabatische solare Heizung von großer Bedeutung ist. Die Zahl der O Messungen in der Mesopausenregion ist ziemlich begrenzt, insbesondere was Zeitserien über Zeiträume von mehr als einigen Jahren betrifft. Die üblicherweise verwendeten Methoden zur Messung von O in der Mesopausenregion basieren auf Airglow-Emissionen der Spezies O, O2 und OH und erfordern die Kenntnis zahlreicher chemischer Ratenkonstanten. Bisherige Studien zeigen klare Hinweise darauf, dass die existierenden Modelle zur Beschreibung der O2 A-Banden-Emission, der grünen Sauerstofflinie und der OH* Meinel-Emissionen nicht konsistent sind, und O Konzentrationsprofile liefern, die sich signifikant unterscheiden. Im Rahmen dieses Projektes soll die Konsistenz der existierenden photochemischen Modelle für die drei genannten Airglow-Emissionen untersucht werden und unter Verwendung von simultanen Satellitenmessunen aller drei Emissionen, sowie dedizierter Modellrechnungen die Übereinstimmung der Modelle verbessert werden. Bei den Messungen handelt es sich um Nightglow Messungen des SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHArtographY) Instruments, das von 2002 - 2012 auf dem Umweltforschungssatelliten Envisat operierte. SCIAMACHY bietet aufgrund seines breiten Spektralbereichs die einmalige Möglichkeit alle für dieses Projekt relevanten Airglow Emissionen gleichzeitig und spektral aufgelöst zu messen. Die geplanten Modellrechnungen sollen mit einer etablierten Suite an photochemischen und globalen Modellen durchgeführt werden. Mittels eines Inversionsverfahrens sollen photochemische Modellparameter derart optimiert werden, dass die Differenzen zwischen Modellergebnissen und SCIAMACHY Messungen für alle relevanten Emissionen simultan minimiert werden. Darüber hinaus soll im Rahmen des Projekts die räumliche und zeitliche Variabilität von O in der Mesopausenregion charakterisiert werden, insbesondere hinsichtlich solarere Einflüsse und möglicher Langzeittrends über den Zeitraum von 2002 - 2012. Es ist außerdem geplant, die existierende - und bekannte Weise unzureichendem - klimatologischen Modelle (z.B. MSIS) von O in der Mesopausenregion zu verbessern. Die Antragsteller sind anerkannte Experten auf Ihren jeweiligen Hauptarbeitsgebieten und besitzen langjährige Erfahrung im Bereich der Satellitenfernerkundung mittels Airglow-Emissionen, beziehungsweise der atmosphärischen Modellierung.
Das Projekt "Teilvorhaben: Integration des Heiz- und Kühlsystems" wird vom Umweltbundesamt gefördert und von SchwörerHaus KG durchgeführt. Zur Erreichung der Klimaschutzziele der Bundesregierung und zur Weiterentwicklung der Energiewende ist die Reduzierung der CO2-Emission des Gebäude-Energiesektors ein wesentlicher Bestandteil. Das geplante Forschungsvorhaben nimmt sich dieser Thematik an und konzentriert sich dabei auf die luftbasierte Gebäudebeheizung und -klimatisierung. Als Entwicklungsziel steht eine Minderung der CO2-Emissionen von mindestens 50 % (bezogen auf die heutige Systemtechnik). Dies soll erreicht werden durch ein abgestimmtes Maßnahmenpaket, das sich aus folgenden Technologieschwerpunkten zusammensetzt: 1. Hohe solarthermische Beiträge bei der Wärmebereitstellung durch den Einsatz von hocheffizienten Solarluftkollektoren und einem neu zu entwickelnden, luftdurch-strömten Feststoffspeicher 2. Optimierung der Lüftungseffektivität durch gezielte Analysen der Raumluftverhältnisse, kombiniert mit einem neuartigen Ansatz der Feuchterückgewinnung 3. Weiterentwicklung des Luftheizsystems der Fa. SchwörerHaus zur Integration solarer Energiequellen und Anpassung der Luft/Luft-Wärmepumpe hinsichtlich optimaler Nutzung von PV-Strom durch adaptive Systemregelung 4. Vermeidung sommerlicher Überwärmung des Gebäudes durch eine Kombination aus aktiven und passiven Maßnahmen, bestehend aus dem neuen Konzept der solar-sorptiven Kühlung ergänzt um innovative Sonnenschutzmaßnahmen. Die Maßnahmen sind miteinander verknüpft und ergänzen einander in optimaler Weise, gleichzeitig stellt jede eine eigene Technologieentwicklung dar. Eine Besonderheit des Vorhabens ist, dass die gesamte Entwicklungskette mit allen vier Maßnahmen im Realmaßstab und über einen längeren Zeitraum erprobt werden kann. Dies erfolgt im sogenannten SolSpaces Gebäude, das in zwei vorangegangenen Projekten sukzessive zu einem Monitoring-Gebäude entwickelt wurde. Es verfügt über eine vollständige Infrastruktur und stellt damit eine ideale Plattform für die gesamtheitliche Untersuchung und messtechnische Bewertung des Maßnahmenpakets dar.
Das Projekt "Teilvorhaben: Konzeptentwicklung" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung durchgeführt. Zur Erreichung der Klimaschutzziele der Bundesregierung und zur Weiterentwicklung der Energiewende ist die Reduzierung der CO2-Emission des Gebäude-Energiesektors ein wesentlicher Bestandteil. Das geplante Forschungsvorhaben konzentriert sich dabei auf die luftbasierte Gebäudebeheizung und -klimatisierung. Als Entwicklungsziel steht eine Minderung der CO2-Emissionen von mindestens 50 % (bezogen auf die heutige Systemtechnik). Dies soll erreicht werden durch ein abgestimmtes Maßnahmenpaket, das sich aus folgenden Technologieschwerpunkten zusammensetzt: 1. Hohe solarthermische Beiträge bei der Wärmebereitstellung durch den Einsatz von hocheffizienten Solarluftkollektoren und einem neu zu entwickelnden, luftdurchströmten Feststoffspeicher 2. Optimierung der Lüftungseffektivität durch gezielte Analysen der Raumluftverhältnisse, kombiniert mit einem neuartigen Ansatz der Feuchterückgewinnung 3. Weiterentwicklung des Luftheizsystems der Fa. SchwörerHaus zur Integration solarer Energiequellen und Anpassung der Luft/Luft-Wärmepumpe hinsichtlich optimaler Nutzung von PV-Strom durch adaptive Systemregelung 4. Vermeidung sommerlicher Überwärmung des Gebäudes durch eine Kombination aus aktiven und passiven Maßnahmen, bestehend aus dem neuen Konzept der solar-sorptiven Kühlung ergänzt um innovative Sonnenschutzmaßnahmen Die vier Maßnahmen sind miteinander verknüpft und ergänzen einander in optimaler Weise, gleichzeitig stellt jede eine eigene Technologieentwicklung dar. Eine Besonderheit des Vorhabens ist, dass die gesamte Entwicklungskette mit allen vier Maßnahmen im Realmaßstab und über einen längeren Zeitraum erprobt werden kann. Dies erfolgt im sogenannten SolSpaces Gebäude, das in zwei vorangegangenen Projekten sukzessive zu einem Monitoring-Gebäude entwickelt wurde. Es verfügt über eine vollständige Infrastruktur und stellt damit eine ideale Plattform für die gesamtheitliche Untersuchung und messtechnische Bewertung des Maßnahmenpakets dar.
Das Projekt "TV: Konstruktion und Bau eines Feststoffspeichers sowie Integration und regelungstechnische Abstimmung eines Vakuumröhren-Solarluftkollektors" wird vom Umweltbundesamt gefördert und von airwasol GmbH & Co. KG durchgeführt. Zur Erreichung der Klimaschutzziele der Bundesregierung und zur Weiterentwicklung der Energiewende ist die Reduzierung der CO2-Emission des Gebäude-Energiesektors ein wesentlicher Bestandteil. Das geplante Forschungsvorhaben nimmt sich dieser Thematik an und konzentriert sich dabei auf die luftbasierte Gebäudebeheizung und -klimatisierung. Als Entwicklungsziel steht eine Minderung der CO2-Emissionen von mindestens 50 % (bezogen auf die heutige Systemtechnik). Dies soll erreicht werden durch ein abgestimmtes Maßnahmenpaket, das sich aus folgenden Technologieschwerpunkten zusammensetzt: 1.Hohe solarthermische Beiträge bei der Wärmebereitstellung durch den Einsatz von hocheffizienten Solarluftkollektoren und einem neu zu entwickelnden, luftdurch-strömten Feststoffspeicher 2.Optimierung der Lüftungseffektivität durch gezielte Analysen der Raumluftverhält-nisse, kombiniert mit einem neuartigen Ansatz der Feuchterückgewinnung 3.Weiterentwicklung des Luftheizsystems der Fa. SchwörerHaus zur Integration solarer Energiequellen und Anpassung der Luft/Luft-Wärmepumpe hinsichtlich optimaler Nutzung von PV-Strom durch adaptive Systemregelung 4.Vermeidung sommerlicher Überwärmung des Gebäudes durch eine Kombination aus aktiven und passiven Maßnahmen, bestehend aus dem neuen Konzept der solar-sorptiven Kühlung ergänzt um innovative Sonnenschutzmaßnahmen Die vier Maßnahmen sind miteinander verknüpft und ergänzen einander in optimaler Weise, gleichzeitig stellt jede eine eigene Technologieentwicklung dar. Eine Besonderheit des Vorhabens ist, dass die gesamte Entwicklungskette mit allen vier Maßnahmen im Realmaßstab und über einen längeren Zeitraum erprobt werden kann. Dies erfolgt im sogenannten SolSpaces Gebäude, das in zwei vorangegangenen Projekten sukzessive zu einem Monitoring-Gebäude entwickelt wurde. Es verfügt über eine vollständige Infrastruktur und stellt damit eine ideale Plattform für die gesamtheitliche Untersuchung und messtechnische Bewertung des Maßnahmenpakets dar.
Das Projekt "Teilvorhaben: Solarthermische Werkzeugtemperierung" wird vom Umweltbundesamt gefördert und von GWK Gesellschaft Wärme Kältetechnik mbH durchgeführt. Ziel des Teilvorhabens 'Solarthermische Werkzeugtemperierung', welches durch die gwk im Arbeitspaket AP 1 bearbeitet wird, ist die Entwicklung und der Aufbau einer solarthermischen Werkzeugheizung und -kühlung sowie die Etablierung einer Temperier-Kaskade, um die bereits realisierbaren CO2-Einsparpotenziale am Beispiel einer besonders relevanten Prozesskette aus Leichtmetall-Druckguss größer als Kunststoff-Spritzguss größer als Mechanisches Fügen aufzeigen zu können. Wichtige Energiequelle für Heizung und Kühlung stellt hierbei die Installierte Solarthermieanlage dar. Die gewonnene thermische Energie wird in ein Schichtspeichersystem eingelagert und versorgt eine Adsorptionskältemaschine zur Realisierung der solaren Werkzeugkühlung. Eine Hochtemperatur-Wärmepumpe lädt die Speicheranlage mit Wärmeenergie auf, wenn keine solarthermische Energie zur Verfügung steht. Mittels einer Temperier-Kaskade werden die Produktionsanlagen und Werkzeuge mit den prozesstechnisch präzisen Temperaturen und Wärmeströmen versorgt.
Das Projekt "Teilvorhaben: Entwicklung der Solar- und Systemtechnik" wird vom Umweltbundesamt gefördert und von Yandalux Solar GmbH durchgeführt. Die Yandalux Solar GmbH möchte dazu beitragen, dass die produktive Nutzung erneuerbarer Energien im ländlichen Niger gefördert wird. Als Experte für Systeme für PV-basierte netzferne Energiesystemtechnik möchte Yandalux als Ansprechpartner und Dienstleister zu allen technischen Fragestellungen im Verbundprojekt wesentlich zu dessen Erfolg beitragen. Im Wesentlichen sollen die Planung, Beschaffung, Logistik und die Installation vor Ort aktiv durchgeführt werden. Dabei können die mehrjährigen Erfahrungen aus vergleichbaren Solar-Projekten von Yandalux im westlichen Afrika effizient genutzt werden. Neben der Unterstützung des Betriebes der Anlagen zur solaren Wasserförderung, solaren Kühlung und anderen einkommensschaffenden Aktivitäten soll auch durch Schulungsmaßnahmen möglichst lokales Personal geschult werden.
Das Projekt "Entwicklung eines Systems zur solaren Kühlung und Trocknung von Fisch-SolCoolDry - Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. Das vorgeschlagene Projekt zielt darauf ab, ein 100% solar versorgtes, netzunabhängiges, container-basierendes Kühl-Trocknungssystem für Fische zu entwickeln. Für die Kältetechnik werden der Einsatz von PCM oder elektrischen Batterien oder eine Kombination aus beiden optimiert, um eine stabile und zuverlässige Kühlung zu gewährleisten. Die Trocknung wird an das Kühlsystem gekoppelt und eine optimierte Wärmeableitung des Kühlkompressors genutzt, um die Trocknung zu unterstützen.
Das Projekt "Teilvorhaben: numerische Simulation des Gesamtsystems und energetische Analyse des Demontrators" wird vom Umweltbundesamt gefördert und von INNIUS GTD GmbH durchgeführt. Im Verbundvorhaben 'Solare magnetische Klimatisierung von Gebäuden (SOMAK)' sollen die Flexibilisierungspotentiale von DEC-Klimaanlagen vergrößert werden (Dessicant and Evaporative Cooling = trocknende und verdunstende Kühlung und ermöglicht im Sommer die Entfeuchtung und Kühlung der Luft, ohne dass dazu eine Kältemaschine benötigt wird). Im Speziellen wird eine magnetokalorische Wärme- und Kälteanlage (MKK) konstruiert und untersucht bei Nutzung eines 'Hardware in the Loop' Versuchsstandes. In einem zweiten Schritt werden numerische Modelle zur MKK-Einheit entwickelt und deren Verhalten in einer komplexen Gebäudesimulation energetisch bewertet. Den dritten wesentlichen Schwerpunkt stellt die Erstellung von Planungsmitteln für derartige neue Systeme dar. Die Analysen werden dabei in enger Abstimmung mit den beteiligten Industriepartnern durchgeführt, um eine sehr hohe Praxisnähe zu gewährleisten. Es werden zunächst Voruntersuchungen an einem Demonstrator durchgeführt, um geeignete grundlegende Parameter für die Werkstoffe sowie für die Konstruktion der MKK-Einheit zu bestimmen. Daraufhin folgt die ausführliche messtechnische Analyse des Demonstrators und dessen Einbindung in eine DEC-Klimaanlage. Ausführlich sollen numerische Analysen über die Kühlperiode von Gebäuden durchgeführt werden. Die hierbei gewonnen Ergebnisse sollen in Hinblick auf die eingesetzte Endenergie und die Wärmephysiologie im Raum bewertet werden. Im letzten Arbeitspaket steht die Ergebnissaufbereitung für die Praxis im Mittelpunkt der Betrachtungen. Im vorliegenden Teilvorhaben liegen die Schwerpunkte der INNIUS GTD GmbH in der numerischen Simulation des Gesamtsystems als Hilfsmittel, der Umsetzung der energetischen Analyse im Hinblick auf ein BIM-Konzept und der planerischen Beteiligung an der Konstruktion / Inbetriebnahme des HIL-Versuchsstandes.
Origin | Count |
---|---|
Bund | 125 |
Type | Count |
---|---|
Förderprogramm | 124 |
Text | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 124 |
Language | Count |
---|---|
Deutsch | 114 |
Englisch | 28 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 60 |
Webseite | 64 |
Topic | Count |
---|---|
Boden | 61 |
Lebewesen & Lebensräume | 64 |
Luft | 54 |
Mensch & Umwelt | 125 |
Wasser | 48 |
Weitere | 125 |