Das Projekt "SunGari: Moderne solare Lösung Afrikanische Grundnahrungsmittel zu verarbeiten" wird vom Umweltbundesamt gefördert und von Simply Solar GbR durchgeführt. Simply Solar ist in SunGari für die thermischen Energiekomponenten zuständig. Die für die Herstellung von Gari nötigen Pfannen müssen beheizt werden, damit die Gelatinisierung und Trocknung des nassen, fermentierten Grundmaterials stattfinden kann. Die nötige thermische Energie soll in diesem Projekt durch Solarenergielösungen bereitgestellt und auf geeignete Weise in die Pfannen und das Grundmaterial eingebracht werden. Simply Solar ist für Konstruktion der Solar-Seite der Prototypen für 3 vielversprechende Hardwarelösungen zuständig: - Photovoltaikstromanlage inklusive Regelungstechnik zum direkten Beheizen einer Pfanne (PV Elektrizität) - Photovoltaikstromanlage mit Speicher zur Erzeugung von Niederdruckdampf zum Beheizen einer Pfanne (PV-Dampf) - Solar Konzentrator zum Beheizen einer Pfanne (direkt oder indirekt über Dampf), (Scheffler Reflector) Die Prototypen werden eine Kapazität von 30kg Gari pro Tag haben (50kg Ausgangsmaterial).
Das Projekt "Teilvorhaben: Herstellung von Compounds mit chromophoren Nanopartikeln, Verarbeitung in der Folienextrusion und Herstellung von folienbeschichteten Demonstratoren" wird vom Umweltbundesamt gefördert und von Universität Kassel, Institut für Werkstofftechnik, Fachgebiet Kunststofftechnik durchgeführt. Ziel des Projektes ist es, durch die Entwicklung funktionaler Folien die Herstellung eines stromerzeugenden LSC Fensterdemonstrators zu ermöglichen. Das LSC (Luminous Solar Concentrator) Prinzip basiert hier darauf, dass Partikel in einer Folie das einfallende Licht in bestimmten Wellenlängen absorbieren und wellenlängenverschoben wieder emittieren. Diese emittierte Strahlung wird zum Rand der Folie geleitet und dort von Solarzellen in elektrische Energie umgewandelt. Durch aufbringen der Folie auf die Glasscheiben von Fenstern können diese zur Stromerzeugung genutzt werden. Die Nutzung eines für die Herstellung der funktionalen Folien zwar modifizierten aber grundsätzlich in der Kunststoffverarbeitung üblichen zweistufigen Kunststoffverarbeitungsprozesses ermöglicht eine effiziente, und für eine spätere kostengünstige Großserienfertigung gut skalierbare Herstellung der Fluoreszenzpartikel tragenden Folie.
Das Projekt "Teilvorhaben: Komponententest, Wasserstoffkontrolle und Wiederaufbereitung des Wärmeträgermediums" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
Das Projekt "Teilvorhaben: DLR" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. Das Projekt PERFECTION basiert auf der Nutzung spezieller Materialeigenschaften zur Anwendung in mit konzentrierter Solarenergie (CSP) betriebenen Energiewandlungs- und Speicherprozessen. In CSP-Systemen werden Spiegel verwendet, um die Sonnenstrahlung zu konzentrieren, so dass sie als Wärmeenergie nutzbar wird. Die so gewonnene Wärmeenergie kann dann bei hoher Temperatur in chemische Energie umgewandelt werden. Dadurch werden 'solaren Brennstoffe' erzeugt: Wasserstoff und/oder Synthesegas. Das Ziel des Vorhabens ist es, Mischoxide mit der Perowskitstruktur und der allgemeinen Zusammensetzung ABO3 für solarthermische Brennstofferzeugungs- und Speicherprozessen zu entwickeln und zu verwenden und dabei Gemeinsamkeiten zwischen den Materialanforderungen dieser verschiedenen Prozesse auszunutzen.
Das Projekt "QuintUMM - Entwicklung metamorpher Quintupel-Solarzellen für die CPV Anwendung mit Wirkungsgraden größer 46%" wird vom Umweltbundesamt gefördert und von AZUR SPACE Solar Power GmbH durchgeführt. Der Solarzellenwirkungsgrad ist aufgrund der Kostenstruktur der Konzentratorphotovoltaik (CPV)-Systeme für die Weiterentwicklung der CPV von zentraler Bedeutung. Im Rahmen dieses Förderprojekts soll deshalb der Prototyp einer Fünffachsolarzelle (Quintupelsolarzelle) mit einem Wirkungsgrad von 46% und Weiterentwicklungspotential auf 47% entwickelt werden. Das Konzept basiert auf Epitaxiestrukturen, welche in aktuellen Projekten zu Raumfahrt-Solarzellen der nächsten Generation entwickelt werden. Die zu erwartende Materialqualität der benötigten Schichten ist weitgehend bekannt, wodurch eine sehr hohe Wahrscheinlichkeit gegeben ist, das Wirkungsgradziel innerhalb dieses Projekts zu erreichen. Die hier verwendete aufrecht metamorphe (UMM) Zellarchitektur wird wesentlich kostengünstiger als andere Solarzellenkonzepte der 46%-Klasse sein. Die Mehrkosten sind relativ zur Wirkungsgradsteigerung moderat, wie AZUR bereits durch die Produkteinführung der UMM-basierenden 3-fach Solarzelle 3C44 demonstrieren konnte. Auf Systemlevel ist somit eine signifikante Senkung der €/W-Kosten zu erwarten. Dadurch werden alle Voraussetzungen geschaffen, dass die hier zu entwickelnde metamorphe Quintupelsolarzelle zukünftig die bevorzugte Solarzelle auf dem hart umkämpften CPV-Markt darstellen und diesem neue Impulse geben wird. Das Ziel des Projektes ist die Realisierung von Solarzellprototypen mit 46% Wirkungsgrad. Weiterhin soll die Mehrleistung im Vergleich zu bestehenden CPV-Zellprodukten in der Anwendung durch Freiland-Messung an CPV Modulen verifiziert werden.
Das Projekt "Teilprojekt: DBFZ" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Das Ziel des Projektes ist die Entwicklung und Evaluierung einer Hybridanlage basierend auf CSP (Concentrated Solar Power) und Biomassevergasung als Weiterentwicklung eines bestehenden Prototyps des REELCOOP-Projekts (Prototyp 3). Ein Biomasse-Vergasungskessel soll entwickelt und statt dem bisher verwendeten Biogaskessels in den Prototyp 3 integriert werden. Dadurch wird ein direkter Vergleich zwischen den Vor- und Nachteilen der beiden Biomassetechnologien im Hybridisierungsbetrieb ermöglicht. Prototyp 3 des REELCOOP-Projekts ist ein hybrides Mini-Kraftwerk zur erneuerbaren Stromerzeugung. Der im Projekt BIOSOL zu entwickelnde Biomasse-Vergasungskessel soll mit Rückständen aus der Olivenölproduktion betrieben werden.
Das Projekt "Teilprojekt: Anpassung der Design- und Simulationtools an ein neues HTF" wird vom Umweltbundesamt gefördert und von TSK Flagsol Engineering GmbH durchgeführt. Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
Das Projekt "Teilprojekt: Untersuchungen zum Langzeitverhalten und zu Risiken" wird vom Umweltbundesamt gefördert und von Wacker Chemie AG durchgeführt. Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
Das Projekt "Teilprojekt: Entwicklung und Erprobung einer flexiblen Rohrverbindung (REPA) für Silikonwärmeträgermedien bis zu einer Betriebstemperatur von 450 °C" wird vom Umweltbundesamt gefördert und von Senior Flexonics GmbH durchgeführt. Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
Das Projekt "Teilprojekt: Verifizierung der Laborergebnisse zum Entzündungs- und Brandverhalten des Wärmeträgermediums in einer realistischen Anlagenumgebung" wird vom Umweltbundesamt gefördert und von TÜV NORD Systems GmbH & Co. KG durchgeführt. Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
Origin | Count |
---|---|
Bund | 49 |
Type | Count |
---|---|
Förderprogramm | 49 |
License | Count |
---|---|
offen | 49 |
Language | Count |
---|---|
Deutsch | 46 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 11 |
Webseite | 38 |
Topic | Count |
---|---|
Boden | 19 |
Lebewesen & Lebensräume | 19 |
Luft | 18 |
Mensch & Umwelt | 49 |
Wasser | 15 |
Weitere | 49 |