Das Projekt "Ecotoxicology of Organotin compounds" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie durchgeführt. Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.
Das Projekt "Teilvorhaben: Integration aller Vorgaben, Konstruktion und Validierung" wird vom Umweltbundesamt gefördert und von Siemens Energy Global GmbH & Co. KG durchgeführt. Im Zuge der Änderung der konventionellen Energieerzeugung hin zu erneuerbaren Energieträgern werden neuartige Netzbetriebsmittel erforderlich, welche die Netzstabilität hinsichtlich Spannung und Frequenz im stationären und im Störfall sicherstellen. Der rotierende asynchrone Phasenschieber ARESS dient als technische Lösung für alle wichtigen Stabilisierungsfunktionen im elektrischen Energieübertragungsnetz. Er integriert Spannungsstabilisierung, Kurzschlussleistung und hochdynamische Frequenzregelung in einem Betriebsmittel. Im Rahmen dieses Vorhabens wird gemeinsam mit dem deutschen Übertragungsnetzbetreiber Amprion und Beteiligung mehrerer Universitäten ein neuartiger Generator mit einem Hochleistungsfrequenzumrichter zu einem rotierenden asynchronen Phasenschieber integriert. Zur Sicherstellung der notwendigen Kurzeit-Energiereserven dient ein Schwungrad, das mechanisch mit dem Generator verbunden ist. Die Anlage wird mittels eines Leistungstransformators an das Höchstspannungsnetz angeschlossen. Die Anlage ist in der Lage dauerhaft +/-270MVar Blindleistung zu liefern und stellt 120MW Wirkleistung im Sekundenbereich als Momentanreserve zur Verfügung. Die Entwicklung umfasst dabei schwerpunktmäßig die Entwicklung des Generators als doppelt gespeiste Asynchronmaschine (DFIG) plus Schwungrad sowie den rotorseitig angebundenen Matrix-Frequenzumrichter. Weiterhin ist die Entwicklung eines Steuer-, Schutz und Regelungssystem erforderlich, das die Funktionalität, Bedienung und Überwachung der Anlage gewährleistet. Diese werden im Anschluss durch computerbasierte Simulationen sowie umfangreichen Prüfungen am Echtzeitsimulator mit der verwendeten originalen Leittechnik verifiziert. Ein weiterer Aspekt ist die Integration der verschiedenen Entwicklungsfelder zu einer Gesamtanlage. Ziel der Entwicklung ist die Umsetzung der Forschungs- und Entwicklungsergebnisse in einer Pilotanlage gemeinsam mit Amprion.
Das Projekt "Teilvorhaben 12.1: Hochgefüllte PE-Ligninblends für den Bau-/Außenbereich - Beständigkeit" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Angewandte Polymerforschung durchgeführt. Die Substitution erdölbasierter Kunststoffe durch Biokunststoffe und Bioverbundwerkstoffe wird oft durch einen Mangel an Informationen zu den einzelnen Materialsystemen eingeschränkt (FNR-Studie FKZ22001017) Dem soll durch die Generierung einer Datenbank und der Entwicklung geeigneter biogener Materialsysteme innerhalb des Gesamtvorhabens 'Beständigkeit von Biokunststoffen und Bioverbundwerkstoffen' entgegengewirkt werden. Das vorliegende Teilvorhaben beinhaltet die Witterungs- und Chemikalienbeständigkeit von vollständig biobasierten und hochgefüllten Bio-PE-Ligninblends in Bezug auf Außenanwendungen. Es werden Bio-PE-Ligninblends mit erhöhter Witterungsbeständigkeit entwickelt, welche langlebige Applikationen im Baubereich forcieren. Hierzu wird der Einfluss des Lignintyps und -anteils in kompatibilisiertem Bio-HDPE auf die Witterungs- und Chemikalienbeständigkeit untersucht. Neben der Analyse separierter Umwelteinflüsse wie der Temperatur, der UV-Strahlung und der Wasseraufnahme wird deren Kombination mittels Klimakammer untersucht. Zur Integrierung und Erhöhung der Verwendung von ligninbasierten Materialien für Außenanwendungen, wird ein Bio-PE-Lignin-Stabilisator-Blendsystem entwickelt. Neben dem Einsatz eines Stabilisators werden die Bio-PE-Ligninblends in einem anschließenden Prozessschritt elektronenstrahlbehandelt, um Vernetzungsreaktionen zu initiieren, welche ebenfalls zur Erhöhung der Beständigkeit dienen.
Das Projekt "Teilvorhaben 12.2: Hochgefüllte PE-Ligninblends für den Bau-/Außenbereich - Charakterisierung" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Kunststofftechnik durchgeführt. Die Substitution erdölbasierter Kunststoffe durch Biokunststoffe und Bioverbundwerkstoffe wird oft durch einen Mangel an Informationen zu den einzelnen Materialsystemen eingeschränkt (FNR-Studie FKZ22001017) Dem soll durch die Generierung einer Datenbank und der Entwicklung geeigneter biogener Materialsysteme innerhalb des Gesamtvorhabens 'Beständigkeit von Biokunststoffen und Bioverbundwerkstoffen' entgegengewirkt werden. Das vorliegende Teilvorhaben beinhaltet die Witterungs- und Chemikalienbeständigkeit von vollständig biobasierten und hochgefüllten Bio-PE-Ligninblends in Bezug auf Außenanwendungen. Es werden Bio-PE-Ligninblends mit erhöhter Witterungsbeständigkeit entwickelt, welche langlebige Applikationen im Baubereich forcieren. Hierzu wird der Einfluss des Lignintyps und -anteils in kompatibilisiertem Bio-HDPE auf die Witterungs- und Chemikalienbeständigkeit untersucht. Neben der Analyse separierter Umwelteinflüsse wie der Temperatur, der UV-Strahlung und der Wasseraufnahme wird deren Kombination mittels Klimakammer untersucht. Zur Integrierung und Erhöhung der Verwendung von ligninbasierten Materialien für Außenanwendungen, wird ein Bio-PE-Lignin-Stabilisator-Blendsystem entwickelt. Neben dem Einsatz eines Stabilisators werden die Bio-PE-Ligninblends in einem anschließenden Prozessschritt elektronenstrahlbehandelt, um Vernetzungsreaktionen zu initiieren, welche ebenfalls zur Erhöhung der Beständigkeit dienen.
Das Projekt "Teilvorhaben: Lebensdaueruntersuchungen des Isoliersystems des DFIG Rotors" wird vom Umweltbundesamt gefördert und von Technische Universität Dortmund, Fakultät für Elektrotechnik und Informationstechnik, Lehrstuhl Hochspannungstechnik und EMV durchgeführt. Im Zuge der Änderung der konventionellen Energieerzeugung hin zu erneuerbaren Energieträgern werden neuartige Netzbetriebsmittel erforderlich, welche die Netzstabilität hinsichtlich Spannung und Frequenz im stationären und im Störfall sicherstellen. Der rotierende asynchrone Phasenschieber ARESS dient als technische Lösung für alle wichtigen Stabilisierungsfunktionen im elektrischen Energieübertragungsnetz. Er integriert Spannungsstabilisierung, Kurzschlussleistung und hochdynamische Frequenzregelung in einem Betriebsmittel. Im Rahmen dieses Vorhabens wird gemeinsam mit dem deutschen Übertragungsnetzbetreiber Amprion und Beteiligung mehrerer Universitäten ein neuartiger Generator mit einem Hochleistungsfrequenzumrichter zu einem rotierenden asynchronen Phasenschieber integriert. Zur Sicherstellung der notwendigen Kurzeit-Energiereserven dient ein Schwungrad, dass mechanisch mit dem Generator verbunden ist. Die Anlage wird mittels einem Leistungstransformator an das Höchstspannungsnetz angeschlossen. Die Anlage ist in der Lage dauerhaft +/-270MVar Blindleistung zu liefern und stellt 120MW Wirkleistung im Sekundenbereich als Momentanreserve zur Verfügung. Die Entwicklung umfasst dabei schwerpunktmäßig die Entwicklung des Generators als doppelt gespeiste Asynchronmaschine (DFIG) plus Schwungrad sowie den rotorseitig angebundenen Matrix-Frequenzumrichter. Weiterhin ist die Entwicklung eines Steuer-, Schutz und Regelungssystem erforderlich, dass die Funktionalität, Bedienung und Überwachung der Anlage gewährleistet. Diese werden im Anschluss durch computerbasierte Simulationen sowie umfangreichen Prüfungen am Echtzeitsimulator mit der verwendeten originalen Leittechnik verifiziert.
Das Projekt "Teilvorhaben: Vorausberechnung des stationären Betriebsverhaltens und der Verluste von DFIG" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Antriebssysteme und Leistungselektronik durchgeführt. Im Zuge der Änderung der konventionellen Energieerzeugung hin zu erneuerbaren Energieträgern werden neuartige Netzbetriebsmittel erforderlich, welche die Netzstabilität hinsichtlich Spannung und Frequenz im stationären und im Störfall sicherstellen. Der rotierende asynchrone Phasenschieber ARESS dient als technische Lösung für alle wichtigen Stabilisierungsfunktionen im elektrischen Energieübertragungsnetz. Er integriert Spannungsstabilisierung, Kurzschlussleistung und hochdynamische Frequenzregelung in einem Betriebsmittel. Im Rahmen dieses Vorhabens wird gemeinsam mit dem deutschen Übertragungsnetzbetreiber Amprion und Beteiligung mehrerer Universitäten ein neuartiger Generator mit einem Hochleistungsfrequenzumrichter zu einem rotierenden asynchronen Phasenschieber integriert. Zur Sicherstellung der notwendigen Kurzeit-Energiereserven dient ein Schwungrad, dass mechanisch mit dem Generator verbunden ist. Die Anlage wird mittels einem Leistungstransformator an das Höchstspannungsnetz angeschlossen. Die Anlage ist in der Lage dauerhaft +/-270MVar Blindleistung zu liefern und stellt 120MW Wirkleistung im Sekundenbereich als Momentanreserve zur Verfügung. Die Entwicklung umfasst dabei schwerpunktmäßig die Entwicklung des Generators als doppelt gespeiste Asynchronmaschine (DFIG) plus Schwungrad sowie den rotorseitig angebundenen Matrix-Frequenzumrichter. Weiterhin ist die Entwicklung eines Steuer-, Schutz und Regelungssystem erforderlich, dass die Funktionalität, Bedienung und Überwachung der Anlage gewährleistet. Diese werden im Anschluss durch computerbasierte Simulationen sowie umfangreichen Prüfungen am Echtzeitsimulator mit der verwendeten originalen Leittechnik verifiziert.
Das Projekt "Teilvorhaben: Technoökomische Modellierung und Analyse" wird vom Umweltbundesamt gefördert und von ef.Ruhr GmbH durchgeführt. Im Zuge der Änderung der konventionellen Energieerzeugung hin zu erneuerbaren Energieträgern werden neuartige Netzbetriebsmittel erforderlich, welche die Netzstabilität hinsichtlich Spannung und Frequenz im stationären und im Störfall sicherstellen. Der rotierende asynchrone Phasenschieber ARESS dient als technische Lösung für alle wichtigen Stabilisierungsfunktionen im elektrischen Energieübertragungsnetz. Er integriert Spannungsstabilisierung, Kurzschlussleistung und hochdynamische Frequenzregelung in einem Betriebsmittel. Im Rahmen dieses Vorhabens wird gemeinsam mit dem deutschen Übertragungsnetzbetreiber Amprion und Beteiligung mehrerer Universitäten ein neuartiger Generator mit einem Hochleistungsfrequenzumrichter zu einem rotierenden asynchronen Phasenschieber integriert. Zur Sicherstellung der notwendigen Kurzeit-Energiereserven dient ein Schwungrad, dass mechanisch mit dem Generator verbunden ist. Die Anlage wird mittels einem Leistungstransformator an das Höchstspannungsnetz angeschlossen. Die Anlage ist in der Lage dauerhaft +/-270MVar Blindleistung zu liefern und stellt 120MW Wirkleistung im Sekundenbereich als Momentanreserve zur Verfügung. Die Entwicklung umfasst dabei schwerpunktmäßig die Entwicklung des Generators als doppelt gespeiste Asynchronmaschine (DFIG) plus Schwungrad sowie den rotorseitig angebundenen Matrix-Frequenzumrichter. Weiterhin ist die Entwicklung eines Steuer-, Schutz und Regelungssystem erforderlich, dass die Funktionalität, Bedienung und Überwachung der Anlage gewährleistet. Diese werden im Anschluss durch computerbasierte Simulationen sowie umfangreichen Prüfungen am Echtzeitsimulator mit der verwendeten originalen Leittechnik verifiziert.
Das Projekt "Nachwuchsgruppe: Einfluss von ionisierender Strahlung auf die Eigenschaften und Verarbeitung von Biokunststoffen sowie biogener Roh- und Reststoffe als funktionale Füll- und Verstärkerstoffe" wird vom Umweltbundesamt gefördert und von Hochschule für Angewandte Wissenschaften Hof, Institut für angewandte Biopolymerforschung durchgeführt. Im Rahmen der Nachwuchsforschergruppe EISBiR sollen ionisierte Biokunststoffe sowie biogene Roh- und Reststoffe als Stabilisatoren bzw. Additive aus nachwachsenden Rohstoffen untersucht werden. Diese sollen neben den großen Anforderungen an die Produkteigenschaften und Verarbeitung heutiger konventioneller Kunststoffe auch ein sortenreines Post-Consumer-Recycling oder einen gezielten Abbau ermöglichen. Die Vorgehensweise umfasst dabei (1) die Aufbereitung biogener Stabilisatoren durch Extraktion nachteiliger Komponenten sowie Trocknung und Feinmahlung zu Pulvern, (2) Verarbeitung und Dispergierung der gemahlenen Stabilisatoren in Extrusionsprozessen (Compoundierung, Folien- und Monofilamentextrusion, 3D-Druck), (3) Bestrahlung der aufbereiteten biogenen Roh- und Reststoffe, der Biokunststoffe, sowie deren Compounds und extrudierte Halbzeuge (Folien, Presskörper, 3D Formteile, Fasern bzw. Monofilamente). (4) Untersuchung des Einflusses der Bestrahlungsart und -prozessparameter auf die chemische und physikalische Struktur, die Eigenschaften des Biokunststoffes und die biologische Abbaubarkeit bzw. Rezyklierbarkeit. Die ausgelösten Vernetzungs- und Spaltungsreaktionen innerhalb der Biokunststoffe haben beispielsweise großen Einfluss auf das Fließverhalten und damit auf die Prozessfähigkeit. Eine Verbesserung der mechanischen Eigenschaften durch die Bestrahlung, um den Anforderungen als technischen Kunststoff gerecht zu werden, wird angestrebt. Daraus ergibt als weiteres Vorgehen die (5) Entwicklung von selbstverstärkten Einstoff-Faserverbund-Biokunststoffen durch gezielte Stabilisation der Fasern mittels strahleninduzierter Vernetzung und Untersuchung der Struktur-Eigenschafts-Beziehungen.
Das Projekt "Bioakkumulationsbewertung von superhydrophoben Stoffen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH durchgeführt. Biokonzentrationstests mit dem Süßwasserflohkrebs Hyalella azteka (HYBIT) wurden als Alternative zu Fischtests vorgeschlagen, und die entsprechenden experimentellen BCF Werte zeigen vielversprechende Korrelationen. Ob der HYBIT-Test auch für stark hydrophobe Chemikalien wie die UV-Stabilisatoren UV-234 und UV-329 geeignet ist, ist unklar. Um abzuschätzen, in welchem Bereich die Aufnahmeratenkonstante k1 für diese Substanzen zu erwarten wäre, wurde in dieser Arbeit ein Vorhersagemodell für k1 in H. azteka entwickelt. Experimentelle Literaturwerte erscheinen im Rahmen der gegebenen Unsicherheiten gegenüber den vorhergesagten Werten plausibel, für eine abschließende Validierung sind jedoch weitere experimentelle Daten erforderlich. Die wichtigsten Unsicherheitsfaktoren für die Vorhersage sind die Unsicherheit der Bestimmung des Octanol/Wasser-Verteilungskoeffizienten und die Bindung der Chemikalie an organisches Material in Wasser (TOC). Im Vergleich zu Fisch-Tests erscheint HYBIT für superhydrophobe Substanzen vielversprechend, nicht nur wegen der experimentellen Vorteile wie kleineren Versuchseinheiten. Dem Modell zufolge profitiert die Messung in H. azteka (ohne Metabolismus) von einer tendenziell höheren Depurationsratenkonstante k2 als im Fisch, was die Zeit bis zum Steady State verkürzen sollte. Dennoch sind für H. azteka laut Modellierung im superhydrophoben Bereich Zeiten bis zum Steady State zu erwarten, die weit über den Standardtestzeiten (bis zu Monaten) liegen. Die Verwendung des BCF als Bewertungskriterium für die Bioakkumulation von superhydrophoben Stoffen ist jedoch grundsätzlich fragwürdig. Bei superhydrophoben Substanzen führt die Einführung von Kot als zusätzlichen Ausscheidungsweg, ohne die in der Realität damit gekoppelte Aufnahme kontaminierter Nahrung, dazu, dass auch ohne Metabolismus oder Wachstum die BCF-Werte mit steigendem Kow sinken, was so nicht zu erwarten wäre unter realen Umständen.
Das Projekt "Wechselwirkung zwischen natürlichen Erdoberflächenprozessen und anthropogener Einflussnahme auf Stoffflüsse in den kolumbianischen Anden" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Der globale Kohlenstoffkreislauf ist dafür verantwortlich, dass die Temperatur auf der Erde stabil genug für die Entstehung und Etablierung von Leben war. Dieser 'natürliche Thermostat' regelt sich durch die Stoffflüsse zwischen den verschiedenen Reservoiren des Kohlenstoffkreislaufs, z.B. bei der Photosynthese, Gesteinsverwitterung, der Erosion von Böden und Gesteinen. Jedoch sind nicht alle Flüsse bekannt bzw. ausreichend quantifiziert. Gebirgsbildung z.B. steigert die Erosion und mobilisiert mehr Sediment und Kohlenstoff, aber ob und wie die Vegetation auf stark bewachsenen (und somit kohlenstoffreichen) Hängen als Stabilisator der Erosion entgegenwirkt, ist unklar. Zudem ist der Eingriff des Menschen in den Kohlenstoffkreislauf nicht nur kurzfristig - z.B. durch die Emission von CO2 aus der Verbrennung fossiler Energieträger - er kann auch den langfristigen Kohlenstoffkreislauf durch Landnutzungsveränderungen verändern. Nur durch ein besseres Verständnis der Treiber der natürlichen Prozesse als auch des Einflusses menschlicher Aktivitäten können die Entwicklung des Systems Erde im vom Menschen geprägten 'Anthropozän' besser abgeschätzt und kritische Schwellenwerte ab denen ein irreversibler Wandel eintritt, identifiziert werden. Die kolumbianischen Anden eignen sich sowohl aufgrund ihrer vielfältigen Klimatologie, Lithologie, Morphologie und ihrer Biodiversität und Landnutzung hervorragend als Modellregion zum Studium natürlicher Prozesse und Stoffflussraten als auch des menschlichen Einflusses auf den Kohlenstoffkreislauf. Im vorgeschlagenen Projekt wollen wir mit kolumbianischen Partnern, die sich nach dem erfolgreichen Friedensprozess einem Neubeginn der wissenschaftlichen Zusammenarbeit widmen, beginnen, dieses Verständnis zu vertiefen. ESkolA soll eine konzeptionelle und methodische Basis für weitere wissenschaftliche Zusammenarbeit und gemeinsame Projektanträge schaffen.
Origin | Count |
---|---|
Bund | 91 |
Type | Count |
---|---|
Förderprogramm | 91 |
License | Count |
---|---|
offen | 91 |
Language | Count |
---|---|
Deutsch | 86 |
Englisch | 11 |
Resource type | Count |
---|---|
Keine | 69 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 64 |
Lebewesen & Lebensräume | 66 |
Luft | 62 |
Mensch & Umwelt | 91 |
Wasser | 44 |
Weitere | 91 |