API src

Found 392 results.

Bekanntmachung gemäß § 5 UVPG - Rösing GbR, Vreden

Die Rösing GbR, Vreden hat hier einen Antrag zur wesentlichen Änderung und zum Be-trieb einer Biogasanlage am landwirtschaftlichen Betrieb Rösing auf dem Grundstück Gemarkung Vreden, Flur 121, Flurstück 4 und Flur 124, Flurstück 29 vorgelegt. Gegenstand des Antrages sind neben dem unveränderten Weiterbetrieb vorhandener Anlagenteile, die Errichtung folgender Komponenten: • Halle (Holzrahmenbauweise, Satteldachform) zur Lagerung von Mist, mit Zwangsbelüftung und zentralem Abluftschornstein, Photovoltaikanlage auf dem Dach • Güllelagerbehälter hergestellt aus Stahlbeton mit Emissionsschutzdach (Zeltdachabdeckung) • Feststoffeintragstechnik mit 2 x 80 m³ • Fermenter mit fester Bedachung hergestellt aus Stahlbeton (ohne Gasspeicher) • Betriebsgebäude mit Technik-, Büro-, Sozialraum und Sanitäreinrichtung • Biogasreinigung und Trocknung, Aktivkohlefilter • Warmwasserpufferspeicher als stehender Stahltank mit Außenisolierung • 2 x Gärproduktlagerbehälter hergestellt aus Stahlbeton jeweils mit Gasspeicher • Errichtung einer neuen Biogas-Notfackel an den geplanten Gärproduktlagern Änderung folgender Komponenten und Stoffströme: • Lageänderung des bestehenden Separators • Lageänderung der bestehenden Biogas-Notfackel • Änderung der Inputstoffmenge auf 33.177 t/a • Umtausch des Zündstrahl-BHKW durch ein Gas-Otto-BHKW

Geotechnische Aspekte beim Ausbau der Bundeswasserstraßen

Die Erhöhung der Leistungsfähigkeit der Wasserstraßen ist ein wichtiger Baustein für die Verbesserung der Infrastruktur in Deutschland. Dafür werden Kanäle für große Schiffe, wie das Großmotorgüterschiff, ausgebaut. Die Wasserstraßen werden vertieft, der Wasserspiegel verbreitert und die Durchfahrtshöhe unter den Brücken vergrößert. Dabei werden auch die Böschungs- und Sohlensicherungen erneuert, damit sie stabil gegen die zunehmende hydraulische Beanspruchung aus der modernen Schifffahrt sind. Vordringliche Projekte sind derzeit der Rhein-Herne-Kanal, die Südstrecke des Dortmund-Ems-Kanals, die Weststrecke des Datteln-Hamm-Kanals und die Oststrecke des Nord-Ostsee-Kanals. Die Abteilung Geotechnik der BAW begleitet Planung und Durchführung des Ausbaus dieser Wasserstraßen. Grundlage der Planung und Ausführung jeglicher Ausbaumaßnahmen ist die Erstellung des Baugrundgutachtens. Es liefert die bodenmechanischen Kennwerte und die geotechnischen Empfehlungen für die Umsetzung. Zunächst stellt die Wasserstraßen- und Schifffahrtsverwaltung des Bundes als Auftraggeber Bestands- und Ausbauunterlagen sowie Angaben zu Belastungsgrößen und zukünftige Nutzungsanforderungen zur Verfügung. Die BAW führt eine historische Erkundung durch, sichtet vorhandene Baugrundgutachten und führt vor Ort eine Bestandsaufnahme der Wasserstraße durch. Im nächsten Schritt wird das Programm der Baugrunduntersuchungen aufgestellt. Lage, Anzahl und Tiefe der Bohrungen und Sondierungen werden hier festgelegt. Das ausführende Amt erstellt daraus die Ausschreibung für die Erkundungsarbeiten und vergibt sie an ein fachkundiges Bohrunternehmen. Vor Beginn der Bohrarbeiten ist vom Bauherrn eine Kampfmittelfreimachung zu veranlassen und eine Gefährdungsanalyse aufgrund möglicher Altlasten einzuholen. Die Erkundungsarbeiten werden bei Bedarf stichprobenartig von der BAW hinsichtlich der fachgerechten Ausführung überwacht. Während der Aufschlussarbeiten werden aus den Bohrungen Grundwasserproben entnommen und untersucht. Sind aggressive Substanzen vorhanden, ist dies bei der Planung der Gründungselemente aus Beton, Zementmörtel oder Stahl zu berücksichtigen. Das Bauteil kann damit entsprechend geschützt und die Dauerhaftigkeit des Bauwerks gewährleistet werden. Nach den Bohrarbeiten werden die Bohrkerne im geotechnischen Labor der BAW geologisch und bodenmechanisch angesprochen und fotografisch dokumentiert. Anhand bodenmechanischer Versuche werden der Boden normgerecht klassifiziert und die Bodenkennwerte bestimmt, die dann in geotechnische Berechnungen einfließen. Im Baugrundgutachten wird der ermittelte Baugrundaufbau beschrieben und in Längsschnitten dargestellt. (Text gekürzt)

Baustoffe aus CO2-basierter Carbonfaser und Granit

Untersuchung ueber den Einfluss des Mikroklimas an Bauwerksoberflaechen und dadurch bedingten Feuchtigkeitstransport in anorganischen, poroesen, insbesondere inhomogenen Baustoffen im Hinblick auf Korrosion

Die Bestaendigkeit poroeser Baustoffe, die der Witterung und Atmosphaere sowie anderen korrosiven Einfluessen, wie z.B. bei Stahlbetonbruecken dem Einfluss von Streusalzen, ausgesetzt sind, wird massgebend von der Struktur des Stoffes und der Feuchtigkeitsaufnahme bzw. -abgabe bestimmt. Das Eindringen aggressiver Stoffe haengt nicht nur vom momentanen Feuchtigkeitsgehalt in den Poren des Baustoffs ab, sondern offenbar auch von instationaerem Wassertransport, der durch Aenderungen, vor allem der Feuchtigkeit in der Umgebung der Bauteiloberflaechen hervorgerufen wird. Bei Baustoffen, die hinsichtlich Diffusionswiderstand und thermodynamischem Verhalten aus unterschiedlichen Stoffen aufgebaut sind (Beispiel: Beton, Stahl- und Spannbeton, mit Kunststoffen beschichtete poroese Stoffe), ist eine theoretische Betrachtung dieser Vorgaenge im Mikrogefuege kaum moeglich. Mit der Mikrowellenmesstechnik sollen die Wassergehaltsaenderungen und damit der Wassertransport bei Einwirkung verschiedener Umgebungsbedingungen untersucht werden, um die Ablaeufe bei Korrosionsvorgaengen genauer verstehen bzw. Massnahmen fuer besseren Korrosionsschutz ableiten zu koennen.

Baustoffe aus CO2-basierter Carbonfaser und Granit, Teilvorhaben: Bau einer Brücke aus CFS und Dauerwechsellast-Tests an Bahnschwellen-Körpern

Bauteilermüdung von Windenergieanlagen aus Stahlbeton und Spannbeton unter hochzyklischer Beanspruchung, Teilvorhaben: Ermüdungsverhalten von druckschwellbeanspruchtem Beton sowie Stahl- und Spannbetonbauteilen mit und ohne trockene Fugen

Ein zentraler Baustein für die Reduktion von Treibhausgasemissionen ist der Ausbau der erneuerbaren Energien, wobei die Windenergie eine tragende Rolle einnimmt. Dabei ist nicht nur die effiziente Funktionsweise der Windenergieanlage von Bedeutung, sondern auch die ressourceneffiziente Herstellung der Turmstrukturen. Die im vorangegangenen Verbundforschungsvorhaben WinConFat (FKZ 0324016) umfangreichen durchgeführten Ermüdungsuntersuchungen an normal- und hochfestem Beton waren auf die Materialebene ausgerichtet. Jedoch werden von den regelwerksgebenden Gremien zusätzliche, über die reinen Materialuntersuchungen hinausgehende, Analysen an Bauteilen verlangt. Im hier beantragten Teilvorhaben des Verbundvorhabens 'WinConFat-Structure' wird diese noch ausstehende Übertragung der Ergebnisse von der Materialebene auf die Bauteil- bzw. Bauwerksebene adressiert. Dabei liegt der Schwerpunkt auf drei Arbeitspaketen. Im ersten Forschungsschwerpunkt wird sich mit dem Einfluss der Bewehrung auf die Ermüdungsfestigkeit bei überdrückten Bauteilen befasst. Der zweite wesentliche Forschungsschwerpunkt liegt in der Betrachtung des Ermüdungsverhaltens von trockenen Bauteilfugen. Hierzu sollen systematische experimentelle und numerische Untersuchungen durchgeführt werden, um den Einfluss von ermüdungsbeanspruchten horizontalen und vertikalen Fugen in Windenergieanlagen auf das Tragverhalten zu analysieren. Im dritten Forschungsschwerpunkt soll eine stochastisch begründete Auswertung des Ermüdungsverhaltens von druckschwellbeanspruchtem Beton durchgeführt werden, um daraus eine Optimierung des bestehenden Sicherheitskonzepts anzustreben. Aus allen drei Forschungsschwerpunkten sollen am Ende des beantragten Vorhabens Empfehlungen für Bemessungskonzepte hinsichtlich der jeweiligen Schwerpunkte entstehen. Durch die Einbindung des DAfStb und DBV als assoziierte Partner wird die Überführung der Empfehlungen in die Bemessungspraxis sichergestellt.

Bauteilermüdung von Windenergieanlagen aus Stahlbeton und Spannbeton unter hochzyklischer Beanspruchung

Ein zentraler Baustein für die Reduktion von Treibhausgasemissionen ist der Ausbau der erneuerbaren Energien, wobei die Windenergie eine tragende Rolle einnimmt. Dabei ist nicht nur die effiziente Funktionsweise der Windenergieanlage von Bedeutung, sondern auch die ressourceneffiziente Herstellung der Turmstrukturen. Die im vorangegangenen Verbundforschungsvorhaben WinConFat (FKZ 0324016) umfangreichen durchgeführten Ermüdungsuntersuchungen an normal- und hochfestem Beton waren auf die Materialebene ausgerichtet. Jedoch werden von den regelwerksgebenden Gremien zusätzliche, über die reinen Materialuntersuchungen hinausgehende, Analysen an Bauteilen verlangt. Im hier beantragten Teilvorhaben des Verbundvorhabens 'WinConFat-Structure' wird diese noch ausstehende Übertragung der Ergebnisse von der Materialebene auf die Bauteil- bzw. Bauwerksebene adressiert. Dabei liegt der Schwerpunkt auf drei Arbeitspaketen. Im ersten Forschungsschwerpunkt wird sich mit dem Einfluss der Bewehrung auf die Ermüdungsfestigkeit bei überdrückten Bauteilen befasst. Der zweite wesentliche Forschungsschwerpunkt liegt in der Betrachtung des Ermüdungsverhaltens von trockenen Bauteilfugen. Hierzu sollen systematische experimentelle und numerische Untersuchungen durchgeführt werden, um den Einfluss von ermüdungsbeanspruchten horizontalen und vertikalen Fugen in Windenergieanlagen auf das Tragverhalten zu analysieren. Im dritten Forschungsschwerpunkt soll eine stochastisch begründete Auswertung des Ermüdungsverhaltens von druckschwellbeanspruchtem Beton durchgeführt werden, um daraus eine Optimierung des bestehenden Sicherheitskonzepts anzustreben. Aus allen drei Forschungsschwerpunkten sollen am Ende des beantragten Vorhabens Empfehlungen für Bemessungskonzepte hinsichtlich der jeweiligen Schwerpunkte entstehen. Durch die Einbindung des DAfStb und DBV als assoziierte Partner wird die Überführung der Empfehlungen in die Bemessungspraxis sichergestellt.

Transregio (TRR) 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen - Grundlagen für eine neue Art zu bauen; Transregio (TRR 280): Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction, Teilprojekt D02: Grundlagen für das Extrudieren von Carbonbetonstrukturen

In Teilprojekt liegt der Fokus auf der Entwicklung von Feinbetonmischungen mit gezielter Steuerung der rheologischen Eigenschaften, um diese für Extrusion und Umformung konstanter und variabler Querschnitte einsetzen zu können. Dabei werden auch alkalisch aktivierte Bindemittel (TP B04) betrachtet. Ein zweiter Schwerpunkt ist die Erprobung von zweistufig aushärtenden Textiltränkungen (TP B02) hinsichtlich ihrer Anwendbarkeit im Extrusions- und anschließenden Umformprozess. Es werden Aspekte der Tragfähigkeit (z. B. der Verbund zwischen Prepregs und Feinbeton, globales Strukturverhalten), der technologischen Umsetzung (z. B. Lagegenauigkeit der Textilien) sowie der Gebrauchstauglichkeit erforscht.

Transregio (TRR) 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen - Grundlagen für eine neue Art zu bauen; Transregio (TRR 280): Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction, Teilprojekt B02: Untersuchung neuer Material- und Technologieansätze zur kontinuierlichen Inline-Umformung und -Konsolidierung textiler Bewehrungen

Bislang werden Textilbewehrungen vor der Bauteilherstellung getränkt und ausgehärtet. Diese relativ steifen Halbzeuge eignen sich nicht zur Herstellung komplexer Bauteile auf Basis der neuen kontinuierlichen Fertigungsprozesse wie 3D-Betondruck und Betonextrusion, da ein Großteils der Formflexibilität durch die etablierte Offline-Konsolidierung verloren geht. TP B02 (Gries) untersucht daher die zeitliche Verschiebung des Umform- und Konsolidierungsschrittes mittels Prepregsystemen in den Betonageprozess. Neben bekannten Aushärtemechanismen wie z. B. Wärme oder UV-Strahlung werden neue Ansätze wie bspw. die Aktivierung über die Alkalität des Betons, über Mikrowellen oder mittels Induktion für eine Inline-Fertigung von Carbonbeton erforscht.

Lückenschluss des rechtsrheinischen Rheinradwegs (Eurovelo 15) mit Brückenschlag über die Lahn und Anschluss an den Radfernweg Deutsche Einheit (D-Route)

Beschreibung des Vorhabens Die Stadt Lahnstein beabsichtigt, die rechtsrheinische Fernradwegeverbindung durch einen Lückenschluss im Bereich der Lahnmündung durchgängig zu gestalten. Hierfür soll der Radweg an der Rheinpromenade von der Kirchstraße über die Hafenmole geführt werden. An der Spitze der Hafenmole wird der Radweg mit einer Fuß- und Radwegebrücke über die Lahn geführt und an das vorh. Radwegenetz angebunden. Die Trassenführung über die Hafenmole zwischen Rhein und Hafen Oberlahnstein stellt die direkte und kürzeste Verbindung des überregionalen Radwegnetzes und der Uferpromenaden entlang des Rheins und der Lahn zwischen Oberlahnstein und Niederlahnstein dar. Die Gesamtlänge des geplanten Lückenschlusses beträgt rund 1.210 m. Hiervon entfallen ca. 890 m auf einen bodengebundenen Asphaltweg und rund 330 m auf eine Brückenkonstruktion über der Lahn. Der Asphaltweg ist von der Anschlussstelle an der Kirchstraße in Oberlahnstein bis zur geplanten Brücke als einstreifiger Querschnitt mit einseitiger Querneigung geplant. In Oberlahnstein beginnt die Wegetrasse im Bereich eines vorhandenen Parkplatzes und verläuft weiter entlang der Hafenmole im Bereich eines bestehenden teilversiegelten Weges (Leinpfad/Wartungsweg). Im Wegeverlauf werden Ausweichbuchten für Begegnungsverkehr von Wartungsfahrzeugen, Rettungswagen etc. eingeplant. Auf der nördlichen Lahnseite in Oberlahnstein schließt das Brückenlager als Anrampung an den vorhandenen und asphaltierten Fuß- und Radweg an. Das Brückenbauwerk wird mit Einzelstützweiten in einem Abstand von 22,5 m errichtet. Die Lahn wird mit einer Konstruktion von 85 m überspannt. Die Brücke steht landseitig jeweils auf ca. 4 Pfeilern. Die Überspannung der Lahn ist freitragend, so dass im Gewässer keine Pfeiler stehen. Die Konstruktion ist ca. 5 m breit. Die Brücke wird mit einem Überbogen zur Abspannung als sehr feingliedrige Konstruktion hergestellt. Der höchste Punkt liegt hierbei rund 15 m über dem angrenzenden Landniveau. Die Durchfahrtshöhe beträgt 6,50 m über dem höchsten schiffbaren Wasserstand (HSW), in Abstimmung mit der Wasser- und Schifffahrtsverwaltung des Bundes (GDWS). Die Oberflächen sind entweder aus Beton oder aus beschichtetem Stahl (Eisenglimmer in Grau). Die Geländer sind aus Edelstahl, nicht poliert, sondern gebürstet, sodass es zu keinen Spiegelungen kommt. Der Belag der Lauffläche wird aus Asphalt hergestellt.

1 2 3 4 538 39 40