API src

Found 178 results.

Mathematische Modellierung von Fliessgewaessern

Mischung, Stofftransport und -umwandlungen bestimmen die Wasserqualitaet in einem Fliessgewaesser bei Einleitung von Verunreinigungssubstanzen ueber Klaeranlagen oder bei Unfaellen. Es sind mathematische Modelle entwickelt worden, mit denen sich die Wasserqualitaet (Konzentration von Wasserinhaltsstoffen) in Abhaengigkeit von Ort und Zeit beschreiben laesst. Diese Modelle basieren auf der eindimensionalen instationaeren Beschreibung des Abflusses und auf einer quasi zweidimensionalen Beschreibung des Stofftransports.

Gasblasen in aquatischen Ökosystemen: Entstehung, Dynamik und Bedeutung für Stofftransport

Gasblasen mit Grössen zwischen einigen Mikrometern bis Zentimetern sind allgegenwärtig in aquatischen Ökosystemen. Sie beeinflussen nicht nur die physikalischen Eigenschaften des Wassers, sie ermöglichen auch einen wichtigen Transportweg mit hoher Relevanz für globale biogeochemische Kreisläufe und das Klima. An der Luft-Wasser-Grenzfläche beschleunigen Blasen den Gasaustausch und beeinflussen damit den globalen Kohlenstoffkreislauf. Aus Sedimenten freigesetzte Blasen (Ebullition) sind ein wichtiger Transportweg für Methan in die Atmosphäre. Darüber hinaus transportieren Blasen nicht nur Gase, sondern auch Partikel, gelöste Stoffe und Bakterien auf ihren Oberflächen. Dieses Material, darunter Kohlenstoff, Nährstoffe und Schadstoffe, stammt aus den Sedimenten oder wurde während des Aufstiegs aus der Wassersäule entfernt. Trotz dieser potenziellen Bedeutung ist wenig über Gasblasen und ihre Eigenschaften in Süßwasserökosystemen bekannt, bestehendes Wissen basiert hauptsächlich auf Beobachtungen in marinen Systemen. In diesem Projekt untersuchen wir diejenigen Prozesse, welche das Vorkommen und die Eigenschaften von Gasblasen in Süßwasserökosystemen kontrollieren, sowie die Rolle der Blasen für den Transport von Gasen, gelösten Stoffen und Partikeln. Wir unterscheiden zwischen Luftblasen die an der Wasseroberfläche eingetragen werden, Blasen die durch Gasübersättigung in der pelagischen Zone entstehen, sowie Blasen die in Sedimenten gebildet werden. Wir gehen davon aus, dass diese drei unterschiedlichen Arten von Blasen unterschiedliche Eigenschaften haben. Auf der Grundlage von Feldmessungen und Laborexperimenten untersuchen wir die Entstehung, Alterung und das Schicksal dieser drei Arten von Blasen und der von ihnen transportierten Substanzen in unterschiedlichen aquatischen Systemen. Die Beobachtungen und Ergebnisse werden mit prozessbasierten Modellen verknüpft um einen theoretisch fundierten und empirisch validierten Rahmen für die Bewertung der Relevanz von Stofftransport durch Gasblasen in aquatischen Ökosystemen zu entwickeln. Dies erlaubt die Übertragung der Ergebnisse dieses Projekts auf eine Vielzahl von Fragestellungen in unterschiedlichen Bereichen der aquatischen Forschung, der Gewässerüberwachung und des Gewässermanagements.

Transport und Verbleib von Mikroplastik in Süßwassersedimenten

Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.

Nachhaltiges und klimaangepasstes Wassermanagement im Bergbau der Region des südlichen Afrikas, Teilprojekt 9

Rückhaltung und Löslichkeit dosisrelevanter Radionuklide unter den reduzierenden Nahfeldbedingungen eines Endlagers im Ton- oder Kristallingestein, Teilprojekt C

Wissenschaftliche Begleitung eines naturnahen Verfahrens zur Behandlung der Regenabflüsse stark verschmutzter Verkehrsflächen

Zielsetzung und Anlass des Vorhabens: Sinnvolle Konzepte zur Regenwasserbewirtschaftung trennen die Regenabflüsse von gering und stark verschmutzten Flächen. Abflüsse von stärker verschmutzten Flächen bedürfen einer Behandlung, die den örtlichen Anforderungen an den Gewässerschutz entspricht. Die bestmögliche Reinigung und Zwischenspeicherung stärker verschmutzter Niederschlagsabflüsse ist die wesentliche Aufgabe eines Retentionsbodenfilters. Im Forschungsvorhaben sollte ein semizentraler Bodenfilter entwickelt werden, der mit geringem Flächenbedarf eine bestmögliche Reinigung stark verschmutzter Regenabflüsse von Verkehrsflächen leistet. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem bisherigen Forschungsstand kommt bei der Adsorption von Inhaltsstoffen dem Bodensubstrat in den Bodenfilteranlagen eine entscheidende Rolle zu. Die Auswahl und Entwicklung eines geeigneten Substrates erfolgte in einem dreistufigen Vorgehen. Über einer Literaturrecherche wurden Anforderungen an Bodensubstrate zur Regenwasserreinigung formuliert. Daraufhin wurden in Schüttelversuchen verschiedene Substrate ausgewählt und ihre Adsorptionseigenschaften gegenüber Schwermetallen, PAKs und Mineralölen ermittelt. Ausgehend von diesen Vorversuchen wurden verschiedene Bodenfilteraufbauten entwickelt und in halbtechnischen Lysimetern untersucht. Dazu wurden die Lysimeter in einem einjährigen Messprogramm mit stark verunreinigten Straßenabflüssen belastet. Die Gesamtfrachten an Inhaltsstoffen im Zulauf zu den Lysimetern wurden ermittelt. An Einzelereignissen wurde die Reinigungsleistung der verschiedenen Bodenfilteraufbauten ermittelt. Die Lysimeter wurden mit einer hohen hydraulischen und somit auch stofflichen Belastung beaufschlagt, die über den bisher bei der Bemessung von Bodenfilteranlagen üblichen Belastungen lagen. Aus den Messergebnissen wurden Rückschlüsse für den Einsatz von Bodenfiltern mit hoher hydraulischer Belastung bei beengten Platzverhältnissen gezogen und Empfehlungen für die Bemessung gegeben. Über die Messung der aufgebrachten Feststoffbelastung und der Durchlässigkeit der Lysimeter wurde eine eventuell eintretende Kolmation der Bodensubstrate erfasst. Fazit: Die untersuchten halbtechnischen Bodenfilter (Lysimeter) führten im Untersuchungszeitraum zu einer deutlichen Reduzierung der straßenspezifischen Schmutzstoffe geführt. Aussagen über den Langzeitbetrieb können auch mit einem Stofftransportmodell nicht gemacht werden. Insgesamt führen adsorptionsstarke Substrate zu einem höheren Rückhalt gelöster Inhaltsstoffe (Schwermetalle). Die Empfehlung des ATV-DVWK-Merkblatt 153 zum Einsatz der Bodenfilter zur Straßenentwässerung kann nach den bisherigen Untersuchungen bestätigt werden. Weiterer Forschungsbedarf besteht hinsichtlich der Belastbarkeit der eingebauten Substrate gegenüber der Chloridbelastung, die bei der Straßenentwässerung als Regelfall anzusehen ist. ...

Transportverhalten und Transformation von organischen Spurenstoffen in Flüssen - Prozesse und Modellierung

Veranlassung Organische Spurenstoffe bilden beim Monitoring der Gewässergüte das größte, weiterhin zunehmende Stoffspektrum. Nach der EU-Wasserrahmenrichtlinie stellt sich die Frage, für welche Spurenstoffe Umweltqualitätsnormen festzusetzen sind und welche Maßnahmen an welchen Stellen die Konzentrationen in den Gewässern effektiv verringern können. Für eine sichere Trinkwasserversorgung aus Uferfiltrat bedarf es auch vor dem Hintergrund der angestrebten Resilienz gegenüber den Folgen des Klimawandels besserer Kenntnisse der Bedingungen, unter denen Grenz- oder Orientierungswerte im Rohwasser überschritten werden. Antworten auf diese Fragen werden dadurch erschwert, dass Transport- und Abbauverhalten organischer Spurenstoffe im Gewässer oft nicht oder nur unzureichend bekannt sind. Dies limitiert auch Prognosen zu Auswirkungen von Unterhaltungs- und Ausbaumaßnahmen auf den chemischen Zustand von Bundeswasserstraßen. Die Aufklärung der reaktiven Eigenschaften bestimmter Stoffe und Stoffgruppen im Fließgewässer und die entsprechend fortentwickelte Modellierung ermöglichen eine Optimierung des Gütemonitorings zum Schutz der Flüsse und der Trinkwasserressourcen. Die Ergebnisse liefern wesentliche Grundlagen, um die Belastung durch bestimmte Spurenstoffgruppen besser einzuschätzen, Belastungsschwerpunkte zu identifizieren und Minimierungsmaßnahmen gezielt planen zu können. Darüber hinaus werden durch erweitertes Prozessverständnis und Modellgrundlagen Voraussetzungen geschaffen, um die Auswirkungen des Klimawandels auf die stoffliche Belastung in Bundeswasserstraßen besser einschätzen zu können. Zur Modellierung organischer Spurenstoffe in Flüssen sind unterschiedliche Modelle im Einsatz. Explizite Gewässergütemodelle mit spezifischen Modulen zum reaktiven Transport organischer Spurenstoffe in Fließgewässern, die auch Photolyse, Sorption und Biodegradation berücksichtigen, sind bisher nur sehr wenige etabliert. Allen Modellen mangelt es an der Implementierung spezifischer Terme, die für den reaktiven Transport besonders relevanter Spurenstoffe bzw. -stoffgruppen im Fließgewässer maßgeschneidert sind. In der Regel fehlen Kenntnisse über das Abbauverhalten der Substanzen und über ihre Transformationsprodukte als Voraussetzung für die modelltechnische Umsetzung. Das Gewässergütemodell QSim der Bundesanstalt für Gewässerkunde (BfG) bietet gute Voraussetzungen für eine ergänzende Entwicklung zur gezielten Simulation des reaktiven Spurenstofftransports in Flüssen: Eine numerische Lösung für den Stofftransport liegt vor und wesentliche Eingangsgrößen für den Spurenstoffabbau sind bereits im Modell angelegt. Fragen zur wasserwirtschaftlichen und ökologischen Belastung durch organische Spurenstoffe und zu deren Modellierung bewegen auch die Wasserwirtschaftsverbände im Rheineinzugsgebiet. Mit Unterstützung der BfG hat der Ruhrverband für Lenne und Ruhr QSim-Modellinstanzen aufgebaut. Ferner wurde vom Ruhrverband ein erster Ansatz zur gezielten Simulation eines photolytisch sensitiven organischen Spurenstoffes mit QSim entwickelt. Da sich zur Aufklärung der Prozesse des reaktiven Spurenstofftransports kleinere Fließgewässer besser eignen als große Flüsse, bietet sich die Kooperation mit einem Wasserwirtschaftsverband des Rheingebietes an, um anhand eines gezielten Prozessmonitorings an einem Zufluss grundlegende Erkenntnisse für die Spurenstoffmodellierung im Rhein ableiten zu können. Da der Ruhrverband und die BfG großes Interesse daran haben, zum Transport- und Abbauverhalten von Spurenstoffen und zu deren Modellierung zusammenzuarbeiten, soll das Forschungsprojekt in Kooperation durchgeführt werden.

Rückhaltung und Löslichkeit dosisrelevanter Radionuklide unter den reduzierenden Nahfeldbedingungen eines Endlagers im Ton- oder Kristallingestein, Teilprojekt B

LURCH - iMolch: Nachhaltige Wassermanagement-Konzepte für Deutschland mithilfe innovativer Monitoring-Strategien, Teilprojekt 1

LURCH - iMolch: Nachhaltige Wassermanagement-Konzepte für Deutschland mithilfe innovativer Monitoring-Strategien

1 2 3 4 516 17 18