API src

Found 150 results.

Related terms

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Spezifikation und Erprobung eines Empfehlungssystems mit Graph Neuronalen Netzen für das Übertragungsnetz von TenneT TSO GmbH

Das Projekt "Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Spezifikation und Erprobung eines Empfehlungssystems mit Graph Neuronalen Netzen für das Übertragungsnetz von TenneT TSO GmbH" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: TenneT TSO GmbH.

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Einsatz von Graph Neuronalen Netzen zur Lastflussberechnung und die Entwicklung eines Empfehlungssystems

Das Projekt "Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Einsatz von Graph Neuronalen Netzen zur Lastflussberechnung und die Entwicklung eines Empfehlungssystems" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Kassel, Fachgebiet Intelligente Eingebettete Systeme.

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Entwicklung eines Empfehlungssystems basierend auf Graph Neuronalen Netzen und Reinforcement Learning

Das Projekt "Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Entwicklung eines Empfehlungssystems basierend auf Graph Neuronalen Netzen und Reinforcement Learning" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik.

BALU - Fertigungstechnologie für Batteriezellkonzepte auf Basis der Aluminium-Ionen-Zellchemie, BALU - Fertigungstechnologie für Batteriezellkonzepte auf Basis der Aluminium-Ionen-Zellchemie

Das Projekt "BALU - Fertigungstechnologie für Batteriezellkonzepte auf Basis der Aluminium-Ionen-Zellchemie, BALU - Fertigungstechnologie für Batteriezellkonzepte auf Basis der Aluminium-Ionen-Zellchemie" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bayreuth, Lehrstuhl für Systemtechnik elektrischer Energiespeicher.

Energieoptimaler Beschleunigungsantrieb und Downsizing-Schleifen

Das Projekt "Energieoptimaler Beschleunigungsantrieb und Downsizing-Schleifen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Elektrotechnisches Institut, Professur für Elektrische Maschinen und Antriebe.Bisher haben energetische Gesichtspunkte beim Betrieb von Stellantrieben nur eine nebengeordnete Rolle gespielt. Die große Zahl von Einsatzfällen lässt sie jedoch zu einer nicht mehr zu vernachlässigenden Größe für mögliches Energieeinsparpotential bei der Wandlung von elektrischer in mechanische Energie werden. Das Vorhaben setzt an den Vorzügen energieoptimaler Bewegungssteuerung und wendet sie weit konsequenter als bisher zum Downsizing von Baugrößen rotierender und linearer Stellmotoren an, indem die geometrischen Wachstumsgesetze z.B. für Effektivmoment und Trägheitsmoment für eine weitere Energieeinsparung genutzt werden und sich zu einer Downsizingschleife entwickeln lassen. Deshalb ist es das Ziel des Vorhabens, die Anwendbarkeit der oben beschriebenen Downsizing-Schleife unter Berücksichtigung aller relevanter Verlustleistungsquellen qualitativ und quantitativ in Theorie und im Experiment nachzuweisen, die Anwendungsfelder auch unter Einbeziehung motornaher energieoptimaler Steuerverfahren (lastabhängige Feldschwächung) abzustecken und den Einfluss von betriebsmäßigen Begrenzungen zu klären. Die Erkenntnisse sollen ausgehend vom starren auf schwingungsfähige mechanische Antriebssysteme übertragen werden, wobei die transiente Energiespeicherung im Feder-Masse System ausgenutzt werden soll.

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Spezifikation und Erprobung eines Empfehlungssystems mit Graph Neuronalen Netzen für das Übertragungsnetz von 50Hertz

Das Projekt "Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Spezifikation und Erprobung eines Empfehlungssystems mit Graph Neuronalen Netzen für das Übertragungsnetz von 50Hertz" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: 50Hertz Transmission GmbH.

Untersuchungen ueber den Aufbau zukuenftiger Systeme fuer die Erzeugung und Verteilung von elektrischer Energie

Das Projekt "Untersuchungen ueber den Aufbau zukuenftiger Systeme fuer die Erzeugung und Verteilung von elektrischer Energie" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Hochspannungstechnik und Starkstromanlagen.

Mobilitätsverhalten und Elektroroller

Das Projekt "Mobilitätsverhalten und Elektroroller" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Science to Business GmbH.Rund 140 Millionen Tonnen Kohlendioxid (CO2) pustet der Straßenverkehr in Deutschland jährlich in die Luft. Gleichzeitig ist es das Ziel der Bundesregierung, den CO2-Ausstoß in den kommenden zehn Jahren deutlich zu verringern. Der Ausbau der Elektromobilität soll Abhilfe schaffen. Doch häufig fehlt es noch an praktikablen Lösungen. Für kurze Fahrten in Städten sieht die Science to Business GmbH der Hochschule Osnabrück in Elektrorollern eine umweltschonende und alltagstaugliche Alternative. Mit einer Studie zum Mobilitätsverhalten und zu infrastrukturellen Anforderungen sollen Erkenntnisse für künftige Verkehrskonzepte gewonnen und der 'Nationalen Entwicklungsplan Elektromobilität' gestärkt werden. Osnabrück steht stellvertretend für Städte mit 100.000 bis 300.000 Einwohnern mit starkem Pendelverkehr. Elektroroller können hier zur akzeptanzfähigen Alternative zum Auto werden. Welche Herausforderungen sich dabei an Infrastruktur und Technik stellen, soll erforscht werden. Bevor eine Vielzahl an elektrisch betriebenen Fahrzeugen auf die Straße gehen kann, müssen zunächst die entsprechenden Stromtankstellen eingerichtet werden. Wie dieses Netzwerk für den Verbraucher am besten ausgestaltet wird, sollen die Ergebnisse der Studie deutlich machen: Von den Mobilitätsmustern lasse sich auf die optimale Infrastruktur schließen. Gleichzeitig sollen Daten zum Energieverbrauch sowie zur Ladedauer und Leistung der Elektroroller erfasst werden. Dazu wird ein Datenlogger entwickelt, mit dem eine Flotte von Elektrorollern ausgestattet werden soll. Mit diesen Datenloggern ließen sich die Fahrzeug- und Nutzungsprofile der innovativen Zweiräder erfassen. Unterschiedliche Unternehmen und Privatpersonen sollen dann mit den Modellrollern über Osnabrücks Straßen düsen. Mit einem Fahrtenbuch werden die Zahlen des Datenloggers ergänzt. Nach Auswertung des Materials wird aufzeigt, welche Probleme Industrie und Energieversorger noch bearbeiten müssen, bevor Elektrofahrzeuge zu einer echten wirtschaftlichen Alternative für den Endkunden werden.

Beurteilung des im Rahmen der Hochspannungs-Gleichstromuebertragung Daenemark-Deutschland eingesetzten 400-kV-Oelkabels im Rahmen einer Anzeige nach Paragraph 20 LWaG Mecklenburg-Vorpommern

Das Projekt "Beurteilung des im Rahmen der Hochspannungs-Gleichstromuebertragung Daenemark-Deutschland eingesetzten 400-kV-Oelkabels im Rahmen einer Anzeige nach Paragraph 20 LWaG Mecklenburg-Vorpommern" wird/wurde gefördert durch: Vereinigte Energiewerke AG (VEAG). Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für wassergefährdende Stoffe (IWS) e.V..Die VEAG plante in Zusammenarbeit mit ihrer daenischen Partnerfirma SEAS, ein im Prinzip einwandiges 400-kV-Oelkabel fuer die Hochspannungs-Gleichstromuebertragung zwischen Daenemark und Deutschland zu verlegen und zu betreiben. Von der insgesamt ca 170 km langen Trasse sollten ca 45 km durch die Ostsee verlaufen. Im Rahmen der Anzeige gemaess Paragraph 20 des Wassergesetzes des Landes Mecklenburg-Vorpommern beim Staatlichen Amt fuer Umwelt und Natur Rostock durch die VEAG sollte geprueft werden, ob durch das Kabel und die dazugehoerigen Einrichtungen eine nachteilige Verunreinigung der Kuestengewaesser zu besorgen war.

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel

Felder um Hochspannungsleitungen: Freileitungen und Erdkabel Ob im Haushalt, bei der Arbeit oder unterwegs – überall wo Elektrizität erzeugt, übertragen oder genutzt wird, können wir elektrischen und magnetischen Feldern ausgesetzt sein. Hoch- und Höchstspannungsleitungen , die zum Transport und zur Verteilung von Elektrizität dienen, tragen ihren Teil zur Exposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern) bei. Das BfS hat 2009 in einer Studie untersucht, wie stark die Felder um Hochspannungs-Freileitungen und -Erdkabel sind. Die höchsten Magnetfeldstärken befanden sich direkt unter 380 kV -Freileitungen und über 380 kV -Erdkabeln. Lange Hochspannungs-Gleichstromleitungen sind in Deutschland noch nicht gebaut. Deshalb gibt es noch keine Messergebnisse. In der Umgebung von Gleich- und Wechselstromleitungen treten elektrische und magnetische Felder auf. In der Regel machen aber elektrische Hausinstallationen und elektrische Geräte, die mit niedriger Spannung betrieben werden, den Hauptanteil der Feldbelastung aus. Wichtig ist: je weiter Hoch- oder Höchstspannungsleitungen, elektrische Geräte und Leitungen der Hausinstallation entfernt sind, desto geringer ist ihr Beitrag zur Gesamtexposition ( d.h. Ausgesetztsein gegenüber elektromagnetischen Feldern). Elektrische Felder Elektrische Felder werden vom Erdreich und von gewöhnlichen Baumaterialien gut abgeschirmt. Deshalb spielen sie bei Erdkabeln keine Rolle, treten aber im Freien in der Umgebung von Freileitungen auf. Die elektrische Feldstärke hängt vor allem von der Betriebsspannung einer Leitung ab. Unter 380 kV -Wechselstrom-Freileitungen (Höchstspannungsleitungen) können Feldstärken auftreten, die über dem Grenzwert für niederfrequente elektrische Felder liegen. Dieser gilt verbindlich nur für Orte, an denen sich Menschen längere Zeit aufhalten, wie zum Beispiel Wohngrundstücke oder Schulhöfe. Maßgeblich ist, wie der Ort üblicherweise genutzt wird. Bei Hoch- und Mittelspannungsleitungen wird der Grenzwert in der Regel auch direkt unterhalb der Leitungen eingehalten. Für Niederspannungsleitungen gilt der Grenzwert nicht, die elektrischen Feldstärken sind wegen der niedrigen Spannung aber klein. Von Gleichstromleitungen gehen statische elektrische Felder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Magnetische Felder Magnetische Felder treten bei Freileitungen und Erdkabeln auf. Sie werden durch das Erdreich oder durch Baumaterialien nicht abgeschirmt und dringen daher in Gebäude und auch in den menschlichen Körper ein. Magnetfelder entstehen, wenn Strom fließt. Weil die Magnetfeldstärke von der Stromstärke abhängt, schwanken die Feldstärken mit den Stromstärken in den Leitungen. Zu Tageszeiten, zu denen viel Strom genutzt oder weitergeleitet wird, ist deshalb auch das Magnetfeld um eine Leitung herum stärker. Die höchsten Feldstärken sind direkt unter Freileitungen und über Erdkabeln zu finden. Mit seitlichem Abstand zu einer Trasse nehmen sie deutlich ab. Bei Freileitungen hängt die Feldverteilung vor allem von der Masthöhe sowie vom Durchhang und der Anordnung der Leiterseile ab. Der Durchhang der Leiterseile wird unter anderem vom Abstand benachbarter Masten entlang der Trasse (Spannfeldlänge) und von der transportierten Strommenge bestimmt: Je mehr Strom fließt, desto wärmer werden die Seile. Dabei dehnen sie sich aus und hängen stärker durch. Der gleiche Effekt tritt im Sommer bei hohen Temperaturen auf. Im Winter kann Eis auf den Leitungen dazu führen, dass sie stärker durchhängen. Der geringere Abstand zum Boden kann dann einen Anstieg der Feldstärkewerte zur Folge haben. Bei Erdkabeln sind die Verlegetiefe, die Kabelanordnung und natürlich die Stromstärke entscheidend für die Magnetfeldstärken und deren Verteilung. Von Gleichstromleitungen gehen statische Magnetfelder aus. Anders als die von Wechselstrom erzeugten niederfrequenten Felder wechseln sie nicht fortlaufend ihre Richtung. Studie: Exposition durch magnetische Felder Das Bundesamt für Strahlenschutz ( BfS ) hat in einer Studie zur Erfassung der niederfrequenten magnetischen Exposition der Bürger in Bayern festgestellt, dass Personen, die nach eigener Auskunft im Umkreis von 100 Metern um eine Hochspannungsleitung wohnten, nur geringfügig (etwa 10 Prozent) höheren Feldern ausgesetzt waren als die anderen Studienteilnehmer. Die Expositionen wurden dabei über 24 Stunden erfasst und gemittelt. Elektrische und magnetische Felder von Freileitungen und Erdkabeln im Vergleich In einer 2009 abgeschlossenen Studie hat das BfS die Feldstärken in der Umgebung von Wechselstrom-Freileitungen und -Erdkabeln der Hoch- und Höchstspannungsebene messen lassen. Die höchsten Magnetfeldstärken wurden unter 380 kV -Freileitungen und über 380 kV -Erdkabeln gemessen. Sie betrugen 1 Meter über dem Erdboden 4,8 (Freileitung) beziehungsweise 3,5 (Erdkabel) Mikrotesla ( µT ). Magnetfelder an 380 kV Hochspannungs-Freileitungen und Erdkabeln: Die Abbildung zeigt die höchsten Werte, die nur bei maximaler Auslastung erreicht werden können. Der zum Zeitpunkt der Messung fließende Strom wurde bei den Betreibern der Leitungen abgefragt und die gemessenen Feldstärken wurden zusätzlich auf den Zustand hochgerechnet, der bei maximaler Stromübertragungsmenge auftreten kann (siehe Grafik). Bei den untersuchten Anlagen wurde auch unter dieser Bedingung der Grenzwert von 100 Mikrotesla in einer Messhöhe von 1 Meter über dem Erdboden eingehalten. Im Vergleich zu Freileitungstrassen nehmen die Magnetfelder bei Erdkabeln mit zunehmendem Abstand von der Trassenmitte deutlich früher und schneller ab, wie die nebenstehende Abbildung zeigt. Längere Hochspannungs-Gleichstromleitungen sind in Deutschland erst in der Planung. Messwerte aus der Umgebung der Leitungen liegen noch nicht vor. Mit baulichen und technischen Maßnahmen kann der Höchstwert von 40 Millitesla, den der Rat der Europäischen Union zum Schutz der Gesundheit empfiehlt, bei der geplanten Stromstärke deutlich unterschritten werden. Dies gilt für alle Bereiche, die für die Allgemeinbevölkerung zugänglich sind. Auch der Grenzwert von 500 Mikrotesla, der in Deutschland seit 2013 für Gleichstromanlagen gilt, wird voraussichtlich deutlich unterschritten. Die Grenzwerte für Gleichstromleitungen und Wechselstromleitungen weichen voneinander ab, weil die Wirkungen von statischen und niederfrequenten Feldern unterschiedlich sind. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 28.02.2025

1 2 3 4 513 14 15