Das Projekt "Improved Protection of Paintings During Exhibition, Storage and Transit (PROPAINT)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Silicatforschung (ISC) durchgeführt. Paintings are among the most important and most visited masterpieces in European museums, galleries and exhibition facilities. To preserve the paintings as close as possible to the artists original expression, is a central focus for national authorities, museum administrators and technical conservators. An important part of this work is to protect the paintings against the degrading influences of the various indoor environments. Specially designed microclimates are more and more used for this purpose. There is a growing concern about the nature of the microclimate which develops over time in these enclosed spaces and its potential for damage to the paintings. The main aim of the PROPAINT project is to develop innovative protection treatments used as a preventive conservation measure for paintings during exhibition, storage and transit. The PROPAINT project will execute research on the protective effect of microclimate-frames, particularly focusing on the microclimate paintings are exposed to inside the frames. PROPAINT will undertake research on the protective effect of varnishes applied to paintings generally and specifically inside microclimate frames. Measurements of the state of microenvironments in microclimate frames and the potential deteriorating effects on paintings will be made both in the laboratory and in the field by using, for the first time simultaneously, dosimeters developed in previous EC projects. The appropriateness and the synergies of their integrated use will be evaluated. The results of the project will allow improved design of microclimate frames to offer best possible microclimates for conservation of paintings during exhibition, storage and transit. The project will contribute with improved comparative knowledge about microclimate effects on varnishes applied to paintings as remediation surface treatments. The project results will also contribute to preventive conservation measures and standards for microclimate control of paintings. Prime Contractor: Norsk institutt for Luftforskning; Kjeller; Norway.
Das Projekt "D4: Catchment scale hydro-biogeochemical fluxes and aquatic diversity under global change" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt durchgeführt. The proposed research contributes to the following overarching goals: (i) better understanding of the complex hydro-biogeochemical and biological interactions in tropical montane forest systems under natural and altered conditions; (ii) the integration of this knowledge in an integrated modeling system that will be tested to long-term and spatially dense datasets; and (iii) prognosis of the likely impact of climate change scenarios on the hydro-biogeochemical and biological processes considering for each process the uncertainty range on the prediction. A main deliverable of the project will be the expanded CMF modeling tool enabling the simulation of the combined impact of land use and climate change on hydro-biogeochemical processes and biological interaction. The project follows the general philosophy of cooperative researchers between experimentalists and modelers, thereby facilitating the implementation of state-of-the-art system understanding into simulation tools. The integrated modelframework developed in D4 will therefore allow to assess the likely impacts of global change on tropical montane rainforest ecosystems of Ecuador.
Das Projekt "Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt durchgeführt. Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
Das Projekt "Multifunctional Encoding System for Assessment of Movable Cultural Heritage (MULTI-ENCODE)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Technische Optik durchgeführt. Nowadays safety, ethical, economical, security issues and the increase demand of loaning for exhibitions in transit, are forcing the Conservation Community to undertake strong initiatives against various types of mistreatment, damage or fraud, during transportation of movable artworks. Therefore the project targets to the development of innovative methodologies and instrumentation to respond to these aspects of increased preservation importance, among which to secure proper treatment, to assess probable damage and to fight fraud actions in transportation. It aims to develop a novel Impact Assessment Procedure by exploiting and providing the holographic technology advances and innovative tools for a highly secure encoding-decoding system of objects features required for sustainable preservation of movable artworks. It may apply in many functional and strategic decision-making aspects in museums operation, from routine seasonal examination of conservation state, to periodic assessment of conservation treatments and materials compatibility, to deterioration control and definition of early-induced damage, to continuous monitoring of transportation impact, to direct confirmation of originality and control of maintenance for any art object in transit. The effective proposed method relies on the original coded extraction of distinct features from the artwork under conservation, transportation and loan that characterizes the state of conservation and its originality. The coding and decoding of characteristic features is performed holographically before and after have been optically and numerically transformed for digital archiving. The archived coded data forming the signatures of the object can be compared at any later time to provide indication of alterations. The project advances the state of the art elaborating in synergy with existing methods and practices and concludes with novel instrumentation and standards for universal application and worldwide exploitation. Prime Contractor: Foundation for Research and Technology Hellas; Heraklion; Greece.
Das Projekt "Residence times across scales: from plot to catchment scale" wird vom Umweltbundesamt gefördert und von Centre de Recherche Public Gabriel Lippmann, Departement Environnement et Agro-Biotechnologies durchgeführt. Residence times is a key signature to characterize flow and transport at all temporal and spatial scales in different hydrological compartments. It is assumed that the spatial organisation of the landscape controls space-time organisation of the water cycle and related processes and hence the residence time. Combining flux and residence concentration data of natural tracers in water, stable isotopes, and artificial tracers will allow us to predict residence time and flow pathways in the different hydrological compartments as well as integrative for entire watersheds. We will investigate with different methods the fingerprint of hydrological processes found in the signal of isotopic composition and natural and artificial tracers of soil, ground and stream water in space and time. The temporal variability of isotopes in soil water, groundwater and stream water will be combined to benchmark transport and flow models and to derive a new functional form of short to long-term transit time distributions. The spatial patterns of stable isotopes in the saturated and unsaturated zone will be used to derive long-term flow pathways, mixing patterns and the proportion of evaporation to transpiration. Artificial tracer experiments using salt and electric resistivities will vizualize and quantify internal flow pathways in particular preferential flow pathways.
Das Projekt "Monitoring of Supporting Measures - Environment (MSM-E) - Sub-Project 1" wird vom Umweltbundesamt gefördert und von Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft durchgeführt. Introduction: Landscapes in Central Europe are constantly undergoing changes due to different land use claims. It is not known if there is an accelerated change close to main transportation routes. According to Swiss studies an increase of 36 percent - 87 percent in freight traffic and 16 percent - 31 percent in individual motorised traffic is forecasted on Swiss roads between 1997 and 2020. It is expected that the landscape already is an will be influenced more by the increasing traffic. Therefore the Monitoring Supporting Measures - Environment (MSM-E) concentrates on the effects of traffic on the environment along the main transit routes in Switzerland. Purpose: The purpose of this sub-project is to set up a monitoring for landscape changes along the transit routes. It includes finding the most suitable data sources and deriving indicators from them. Further the extent of the transit-corridor has to be defined. And to obtain first results we analyse the current state of the landscape an the retrospective changes wherever possible. Study Area: The study area is the landscape along the main transit routes A2 and A13 through the Swiss Alps. As control regions we chose The A1, which is also a motorway, but not a transit route. Stratification: We demarcate the potentially influenced landscape by using the relief that is the river catchment areas. We then attribute the the investigation area with the ecoregion, the motorway assignment and to rural or urban area. According to these criteria, the analyses are for these subregions. Indicators and Data Sources: The study area covers about of the Swiss landscape and touches around 20 cantons. Therefore and in order to observe the change regularly we build the monitoring on data sources which are available every few years for the whole of Switzerland. The derived indicators cover all land use classes. However, as the largest changes happen in the settlement and urban areas, we look at them in more detail. Analysis: Our focus lies on the distance analysis. We compare the distance zones and look whether there is a distance trend in the defined indicators. We further compare the different motorways and the different ecoregions and rural or urban areas to find similarities or disparities. Results: Preliminary results of the current state show that the landscape close to the motorways are stronger developed that further away or than the average of the corresponding ecoregion. This effect is also apparent if the relief is filtered off. The analysis of the retrospective changes show that this effect hardly depends on the distance only. Conclusions: The results show that the current landscape correlate to a great part with the distance to the motorway. It suggests that the motorway has influenced the landscape. However, if we look at the changes, the distance seems not to be such an essential factor.
Das Projekt "MfM-U: Auswirkungen des Transitverkehrs auf die Lebensqualität der Bevölkerung - Grundlagenuntersuchungen und Entwicklung von Monitoring-Indikatoren" wird vom Umweltbundesamt gefördert und von Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft durchgeführt. Ausgangslage: Der Transitverkehr kann gravierende Auswirkungen auf das Wohlbefinden und die Lebensqualität der Bewohner von Transiträumen haben. Unter Transitverkehr ist sowohl der individuelle Pkw-Verkehr, der Güterverkehr auf der Strasse als auch der schienengebundene Personen- und Güterverkehr zu verstehen. In dem hier vorgestellten Grundlagenforschungsprojekt stehen die Auswirkungen der bestehenden Transitachsen und des Baus neuer Transitstrecken auf die wahrgenommene landschaftsbezogene Lebensqualität im Vordergrund. Der durch den Transitverkehr verursachte Lärm und die beeinträchtigte Luftqualität können für die landschaftsbezogene Lebensqualität indirekt ebenfalls eine Rolle spielen. Problemstellung: ( ) Insgesamt ist davon auszugehen, dass die landschaftlichen Veränderungen durch den Transitverkehr gravierende Konsequenzen für die Befriedigung der landschaftsbezogenen Bedürfnisse nach Identifikation und Erlebnis der lokalen Bevölkerung haben können. Mögliche Folgen sind die Entfremdung vom eigenen Lebensraum mit all ihren negativen Konsequenzen für eine nachhaltige Entwicklung: Gleichgültigkeit gegenüber künftiger Entwicklung, Rückzug in Privatsphäre, erhöhte Freizeitmobilität oder gar definitiver Wegzug. Im Sinne einer nachhaltigen Raumentwicklung ist der vermutete Verlust der grundlegenden Landschaftsfunktionen in den Transiträumen bedenklich und es besteht ein Bedarf an der Entwicklung geeigneter Massnahmen, um den negativen Auswirkungen des Transitverkehrs entgegenzuwirken. Als Basis für eine vorausschauende Raumentwicklung ist es zudem wichtig, neben kurzfristigen Auswirkungen auch die Langzeiteffekte des Transitverkehrs auf die Bevölkerung und die wahrgenommene landschaftsbezogene Lebensqualität zu ermitteln. Ziele: Das Hauptziel des Projektes besteht darin, zu ermitteln, wie die Befriedigung der beiden grundlegenden Landschaftsbedürfnisse durch den Transitverkehr, sowie den Bau neuer Transitachsen beeinflusst wird. Hierbei geht es nicht nur darum den kurzfristigen Einfluss des Transitverkehrs zu erforschen sondern vielmehr darum seine langfristigen Auswirkungen auf die Bevölkerung dieser und der angrenzenden Räume zu ermitteln. Ein weiteres Ziel besteht deshalb darin, anhand der beschriebenen Grundlagenforschung geeignete Indikatoren für die Langzeitbeobachtung von Transiträumen zu entwickeln, die einer langfristigen Raumplanung zugute kommen? U.s.w.
Origin | Count |
---|---|
Bund | 7 |
Type | Count |
---|---|
Förderprogramm | 7 |
License | Count |
---|---|
open | 7 |
Language | Count |
---|---|
Deutsch | 7 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 6 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 7 |
Lebewesen & Lebensräume | 7 |
Luft | 6 |
Mensch & Umwelt | 7 |
Wasser | 7 |
Weitere | 7 |