API src

Found 30 results.

Related terms

Messergebnisse zur Radioaktivität in: Karotten mit Süßkartoffeln + Rind (31.05.2022)

Messdaten zur Überwachung der Radioaktivität in der Umwelt, in Lebens- und Futtermitteln

Messergebnisse zur Radioaktivität in: Gemüse mit Süßkartoffeln (31.05.2022)

Messdaten zur Überwachung der Radioaktivität in der Umwelt, in Lebens- und Futtermitteln

Messergebnisse zur Radioaktivität in: Frischgemüse Topinambur (15.04.2021)

Messdaten zur Überwachung der Radioaktivität in der Umwelt, in Lebens- und Futtermitteln

Messergebnisse zur Radioaktivität in: Süßkartoffel orangefleischig (30.06.2020)

Messdaten zur Überwachung der Radioaktivität in der Umwelt, in Lebens- und Futtermitteln

Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen

Inhaltsverzeichnis: VORWORT: Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen 7 --- I. Einführung, Auswertung und Schlussfolgerungen. Stefan Nehring, Ingo Kowarik, Moritz von der Lippe, Daniel Lauterbach, Birgit Seitz, Maike Isermann & Konstantin Etling: 1 EINLEITUNG UND FRAGESTELLUNG 9 --- 2 DATENGRUNDLAGEN 11 --- 3 ARTÜBERGREIFENDE AUSWERTUNGEN 13 --- 3.1 Taxonomisches Spektrum 13 --- 3.2 Ursprüngliches Areal 14 --- 3.3 Einführungsweise 15 --- 3.4 Einfuhrvektoren 15 --- 3.5 Erstnachweis 16 --- 3.6 Zeitspanne zwischen Ersteinbringung und Erstnachweis ("time lag") 18 --- 3.7 Status 19 --- 3.8 Lebensraum 20 --- 3.9 Aktuelle Verbreitung 20 --- 3.10 Aktueller Ausbreitungsverlauf 21 --- 3.11 Gefährdung der Biodiversität 22 --- 3.12 Förderung durch Klimawandel 23 --- 4 ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNGEN 25 --- 5 LITERATUR 26 --- II. Handlungsrahmen und Handlungsempfehlungen. Stefan Nehring: --- 1 HANDLUNGSRAHMEN 29 --- 2 HANDLUNGSEMPFEHLUNGEN 30 --- 3 LITERATUR 33 --- III. Steckbriefe. Stefan Nehring, Daniel Lauterbach, Birgit Seitz, Ingo Kowarik, Moritz von der Lippe, Andreas Hussner, Beate Alberternst, Uwe Starfinger, Franz Essl, Stefan Nawrath & Maike Isermann: 1 AUSWAHL DER EINGESTUFTEN ARTEN 35 --- 2 DATENGRUNDLAGEN UND VORGANGSWEISE DER EINSTUFUNG 36 --- 3 LITERATUR 38 --- 4 STECKBRIEFE GEBIETSFREMDER GEFÄSSPFLANZEN 39 --- Acer negundo (Eschen-Ahorn) 42 --- Allanthus altissima (Götterbaum) 44 --- Allium paradoxum (Wunder-Lauch) 46 --- Ambrosia artemisiifolia (Beifußblättrige Ambrosie) 48 --- Amorpha fruticosa (Gewöhnlicher Bastardindigo) 50 --- Artemisia verlotiorum (Kamtschatka-Beifuß) 52 --- Asclepias syriaca (Gewöhnliche Seidenpflanze) 54 --- Azolla filiculoides (Großer Algenfarn) 56 --- Bidens frondosa (Schwarzfrüchtiger Zweizahn) 58 --- Buddleja davidii (Schmetterlingsstrauch) 60 --- Bunias orientalis (Orientalische Zackenschote) 62 --- CIaytonia perfoliata (Gewöhnliches Tellerkraut) 64 --- Cotoneaster dammeri (Teppich-Zwergmispel) 66 --- Cotoneaster divaricatus (Sparrige Zwergmispel) 68 --- Cotoneaster horizontalis (Fächer-Zwergmispel) 70 --- Crassula helmsii (Nadelkraut) 72 --- Cynodon dactylon (Gewöhnliches Hundszahngras) 74 --- Dianthus giganteus (Große Nelke) 76 --- Echinocystis lobata (Stachelgurke) 78 --- Echinops sphaerocephalus (Drüsen blättrige Kugeldistel) 80 --- Elaeagnus angustifolia (Schmalblättrige Ölweide) 82 --- Elodea canadensis (Kanadische Wasserpest) 84 --- Elodea nuttallii (Schmalblättrige Wasserpest) 86 --- Epiobium diiatum (Drüsiges Weidenröschen) 88 --- Fallopia bohemica (Bastard-Staudenknöterich) 90 --- Fallopia japonica (Japan-Staudenknöterich) 92 --- Fallopia sachalinensis (Sachalin-Staudenknöterich) 94 --- Fraxinus pennsylvanica (Pennsylvanische Esche) 96 --- Galeobdolon argentatum (Silber-Goldnessel) 98 --- Gleditsia triacanthos (Amerikanische Gleditschie) 100 --- Helianthus tuberosus (Topinambur) 102 --- Heracleum mantegazzianum (Riesen-Bärenklau) 104 --- Hydrocotyle ranunculoides (Großer Wassernabel) 106 --- Impatiens balfourii (Balfour-Spring kraut) 108 --- Impatiens edgeworthii(Buntes Springkraut) 110 --- Impatiens glandulifera (Drüsiges Springkraut) 112 --- Impatiens parviflora (Kleines Springkraut) 114 --- Lagarosiphon major (Wechselblatt-Wasserpest) 116 --- Lonicera henryi (Henrys Geißblatt) 118 --- Lonicera tatarica (Tataren-Heckenkirsche) 120 --- Ludwigia grandiflora (Großblütiges Heusenkraut) 122 --- Ludwigia x kentiana (Kents Heusenkraut) 124 --- Lupinus polyphyllus (Vielblattrige Lupine) 126 --- Lycium barbarum (Gewöhnlicher Bocksdorn) 128 --- Lysichiton americanus (Gelbe Scheinkalla) 130 --- Mahonia aquifolium (Gewöhnliche Mahonie) 132 --- Miscanthus sacchariflorus (Großes Stielblütengras) 134 --- Miscanthus sinensis (Chinaschilf) 136 --- Myriophyllum aquaticum (Brasilianisches Tausendblatt) 138 --- Myriophyllum heterophyllum (Verschiedenblättriges Tausendblatt) 140 --- Paulow ia tomentosa (Chinesischer Blauglockenbaum) 142 --- Phedimus spurius (Kaukasus-Glanzfetthenne) 144 --- Phytolacca americana (Amerikanische Kermesbeere) 146 --- Pinus nigra (Schwarz-Kiefer) 148 --- Pinus strobus (Weymouth-Kiefer) 150 --- Pistia stratiotes (Wassersalat) 152 --- Populus canadensis (Bastard-Pappel) 154 --- Prunus laurocerasus (Lorbeerkirsche) 156 --- Prunus serotina (Späte Traubenkirsche) 158 --- Pseudotsuga menziesii (Gewöhnliche Douglasie) 160 --- Quercus rubra (Rot-Eiche) 162 --- Rhododendron ponticum (Pontischer Rhododendron) 164 --- Rhus typhina (Essig-Baum) 166 --- Robinia pseudoacacia (Robinie) 168 --- Rosa rugosa (Kartoffel-Rose) 170 --- Rubus armeniacus (Armenische Brombeere) 172 --- Rudbeckia laciniata (Schlitzblättriger Sonnenhut) 174 --- Sarracenia purpurea (Braunrote Schlauchpflanze) 176 --- Senecio inaequidens (Schmalblättriges Greiskraut) 178 --- Solida go canadensis (Kanadische Goldrute) 180 --- Solidago gigantea (Späte Goldrute) 182 --- Spartina anglica (Salz-Schlickgras) 184 --- Symphoricarpos albus (Gewöhnliche Schneebeere) 186 --- Symphyotrichum lanceolatum (Lanzett-Herbstaster) 188 --- Symphyotrichum novi-belgii (Neubelgien-Herbstaster) 190 --- Syringa vulgaris (Gewöhnlicher Flieder) 192 --- Telekia speciosa (Große Telekie) 194 --- Vaccinium atlanticum (Amerikanische Strauch-Heidelbeere) 196 --- Vallisneria spiralis (Wasserschraube) 198 --- Viburnum rhytidophyllum (Leberblattschneeball) 200 ---

Topinambur (Helianthus tuberosus)

Graue Liste Sachsen-Anhalt Steckbrief Verbreitungskarte Atlas Lebensräume: Brachen, Wiesen, Wald- und Straßenränder, Ruderalflächen, an Gräben und Ufersäumen Problematische Vorkommen: Ufersäume, Feuchtgebiete Steckbriefe / Factsheets: neobiota.de , Artensteckbrief Regierungspräsidium Gießen , infoflora.ch , Österreichischer Wasser- und Abfallwirtschaftsverband , Wikipedia , CABI Invasive Species Compendium (engl.)

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Experior Micro Tech GmbH durchgeführt. Klassische agrarische Produktionsweisen stehen vor Herausforderungen wie Klimawandel, Eutrophierung, Phosphorknappheit und Wasserverschmutzung sowie einer stärker werdenden Urbanisierung. Eine Lösung dem zu begegnen ist die vertikale, hydroponische Pflanzenproduktion in urbanen Regionen unter effizientem Wasser- und Nährstoffeinsatz. Das Projekt Nutrient+CtrlIVF hat daher zum Ziel, mittels NUTRI-STAT-Analysebausteinen die ionenselektive Regelung von Nährstoffen für den vertikalen, hydroponischen Pflanzenbau in Indoor Vertical Farms (IVF) zu etablieren. Aktuell wird die Nährstoffdosierung in re-zirkulierenden hydroponischen Systemen mittels Leitfähigkeits- und pH-Wert-Steuerung geregelt. Dies führt bei längerer Kreislaufführung der Nährlösung im Kultursystem zu einer Über- oder Unterversorgung mit einzelnen Nährstoffen. Ein zeitweises Öffnen des Nährlösungskreislaufs und damit verbundenes Verwerfen der Nährlösung (aktuelle Praxis) wird mit dem Einsatz von ionenselektiven Sensoren verhindert. Im beantragten Projekt messen NUTRI-STAT-Analysebausteine die Hauptnährstoffe Nitrat, Kalium und Dihydrogenphosphat. Die Sensoren werden mit einer Ansteuerungselektronik in eine Düngeunit integriert (Düngeunit+ISFET) und der Mess- und Dosierprozess für hydroponische Kultursysteme modifiziert und angepasst. Die Düngeunit+ISFET wird kontinuierlich den Einzelnährstoffgehalt in der hydroponischen Lösung messen und die Zudosierung ionenspezifisch umsetzen. Als Modellkulturen werden Wasserlinse und Süßkartoffel genutzt, da diese sich aufgrund der ernährungsphysiologischen Bedeutung und der Nutzbarkeit des gesamten Produkts für IVF's besonders eignen. Die bedarfsgerechte und nährstoffspezifische Düngung im urbanen, vertikalen Anbau soll besonders hochwertige Pflanzenqualitäten bei geringeren Nährstoff- und Wassereinsätzen und folglich erhöhter Ressourceneffizienz im Vergleich zum traditionellen Anbausystemen generieren.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von ANEDO GmbH durchgeführt. Klassische agrarische Produktionsweisen stehen vor Herausforderungen wie Klimawandel, Eutrophierung, Phosphorknappheit und Wasserverschmutzung sowie einer stärker werdenden Urbanisierung. Eine Lösung dem zu begegnen ist die vertikale, hydroponische Pflanzenproduktion in urbanen Regionen unter effizientem Wasser- und Nährstoffeinsatz. Das Projekt Nutrient+CtrlIVF hat daher zum Ziel, mittels NUTRI-STAT-Analysebausteinen die ionenselektive Regelung von Nährstoffen für den vertikalen, hydroponischen Pflanzenbau in Indoor Vertical Farms (IVF) zu etablieren. Aktuell wird die Nährstoffdosierung in re-zirkulierenden hydroponischen Systemen mittels Leitfähigkeits- und pH-Wert-Steuerung geregelt. Dies führt bei längerer Kreislaufführung der Nährlösung im Kultursystem zu einer Über- oder Unterversorgung mit einzelnen Nährstoffen. Ein zeitweises Öffnen des Nährlösungskreislaufs und damit verbundenes Verwerfen der Nährlösung (aktuelle Praxis) wird mit dem Einsatz von ionenselektiven Sensoren verhindert. Im beantragten Projekt messen NUTRI-STAT-Analysebausteine die Hauptnährstoffe Nitrat, Kalium und Dihydrogenphosphat. Die Sensoren werden mit einer Ansteuerungselektronik in eine Düngeunit integriert (Düngeunit+ISFET) und der Mess- und Dosierprozess für hydroponische Kultursysteme modifiziert und angepasst. Die Düngeunit+ISFET wird kontinuierlich den Einzelnährstoffgehalt in der hydroponischen Lösung messen und die Zudosierung ionenspezifisch umsetzen. Als Modellkulturen werden Wasserlinse und Süßkartoffel genutzt, da diese sich aufgrund der ernährungsphysiologischen Bedeutung und der Nutzbarkeit des gesamten Produkts für IVF's besonders eignen. Die bedarfsgerechte und nährstoffspezifische Düngung im urbanen, vertikalen Anbau soll besonders hochwertige Pflanzenqualitäten bei geringeren Nährstoff- und Wassereinsätzen und folglich erhöhter Ressourceneffizienz im Vergleich zum traditionellen Anbausystemen generieren.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Hochschule Osnabrück, Arbeitsgruppe Growing Knowledge durchgeführt. Klassische agrarische Produktionsweisen stehen vor Herausforderungen wie Klimawandel, Eutrophierung, Phosphorknappheit und Wasserverschmutzung sowie einer stärker werdenden Urbanisierung. Eine Lösung dem zu begegnen ist die vertikale, hydroponische Pflanzenproduktion in urbanen Regionen unter effizientem Wasser- und Nährstoffeinsatz. Das Projekt Nutrient+CtrlIVF hat daher zum Ziel, mittels NUTRI-STAT-Analysebausteinen die ionenselektive Regelung von Nährstoffen für den vertikalen, hydroponischen Pflanzenbau in Indoor Vertical Farms (IVF) zu etablieren. Aktuell wird die Nährstoffdosierung in re-zirkulierenden hydroponischen Systemen mittels Leitfähigkeits- und pH-Wert-Steuerung geregelt. Dies führt bei längerer Kreislaufführung der Nährlösung im Kultursystem zu einer Über- oder Unterversorgung mit einzelnen Nährstoffen. Ein zeitweises Öffnen des Nährlösungskreislaufs und damit verbundenes Verwerfen der Nährlösung (aktuelle Praxis) wird mit dem Einsatz von ionenselektiven Sensoren verhindert. Im beantragten Projekt messen NUTRI-STAT-Analysebausteine die Hauptnährstoffe Nitrat, Kalium und Dihydrogenphosphat. Die Sensoren werden mit einer Ansteuerungselektronik in eine Düngeunit integriert (Düngeunit+ISFET) und der Mess- und Dosierprozess für hydroponische Kultursysteme modifiziert und angepasst. Die Düngeunit+ISFET wird kontinuierlich den Einzelnährstoffgehalt in der hydroponischen Lösung messen und die Zudosierung ionenspezifisch umsetzen. Als Modellkulturen werden Wasserlinse und Süßkartoffel genutzt, da diese sich aufgrund der ernährungsphysiologischen Bedeutung und der Nutzbarkeit des gesamten Produkts für IVF's besonders eignen. Die bedarfsgerechte und nährstoffspezifische Düngung im urbanen, vertikalen Anbau soll besonders hochwertige Pflanzenqualitäten bei geringeren Nährstoff- und Wassereinsätzen und folglich erhöhter Ressourceneffizienz im Vergleich zum traditionellen Anbausystemen generieren.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Lebensmittel- und Bioverfahrenstechnik durchgeführt. Ziel des Projektes ist die direkte Nutzung des Reservekohlenhydrats Inulin aus Topinambur nach geeigneter biotechnologischer Modifizierung und Optimierung in der Backwarenindustrie. Inulin erfüllt unmittelbar die Definition eines präbiotischen Lebensmittelbestandteils. Topinambur-Inulin ist innerhalb eines bestimmten Molmassebereiches am wirksamsten. Deshalb soll gezielt Einfluss auf die Kettenlänge der Inulinmoleküle genommen werden. Derzeit ist weitgehend unbekannt, wie sich Inulin bei der Herstellung von Backwaren verändert und in welchem Umfang es im Endprodukt wirksam wird. Zwei Verwertungsrichtungen sind relevant: 1. Der in der LIVEN GmbH gewonnene Ausgangsrohstoff aus Topinamburknollen wird im Ergebnis der bioverfahrenstechnischen Forschungsarbeiten als ein wirkungsoptimiertes Inulinprodukt zur Verfügung stehen. 2.Es werden Verfahrensuntersuchungen bei kleinstückigen Backwaren und Extrudaten im Labormaßstab am Institut für Lebensmitteltechnik und im kleintechnischen Maßstab in der Dr. Quendt Backwaren GmbH durchgeführt. Die präbiotische Wirkung wird durch den Einsatz des wirkungsoptimierten Inulinproduktes als qualitätsgebender Ausgangsstoff erreicht.

1 2 3