Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Arbeitsgruppe SG 1.1 Biologische Strahlenwirkungen, Biologische Dosimentrie durchgeführt. In der Frage niedriger Dosen ionisierender Strahlen besteht dringender Forschungsbedarf sowohl hinsichtlich der Dosis-Wirkungs-Beziehungen als auch hinsichtlich der biologischen Mechanismen. Es wurde deshalb ein Projekt initiiert, bei dem die Wirkungen niedriger Strahlendosen über die gesamte Lebensspanne in Mäusen beiderlei Geschlechts analysiert wird. Die Tiere wurden einmalig im Alter von 10 Wochen mit Dosen zwischen 0 Gy und 0,5 Gy (60Co) bestrahlt und 4 und 24 Stunden sowie 12 und 18 Monate danach Proben gesammelt. Das Auge wird dabei sofort untersucht, andere Organe zur späteren systematischen Untersuchung asserviert. Um die Frage der genetischen Empfindlichkeit zu untersuchen, werden neben Wildtyp-Mäusen auch heterozygote Mutanten einbezogen; die rezessive Mutation betrifft Ercc2, ein Gen, das an der allgemeinen Transkription und DNA Reparatur beteiligt ist. Durch vielfältige molekulare und 'OMICS'-Analysen einschließlich einer systembiologischen Auswertung wird ein Gesamtbild der Strahlenwirkung über die gesamte Lebenszeit der Maus erwartet, sowie ein Einblick in die Signalwege und Mechanismen niedriger Dosen. Der Fokus des Teilprojekts am BfS liegt auf Herz-Kreislauf-Markern und auf immunologischen Markern. Dazu wird das gesammelte und isolierte Blutplasma für die Bestimmung inflammatorischer Faktoren und Stoffwechselmetabolite verwendet. Mit Hilfe des Multiplex Immunassays (Kooperation Deutsches Diabeteszentrum) werden Veränderungen in bekannten Cytokinen/Chemokinen (z.B. IL-6, IL-8, CRP, TGF-beta, VEGF) analysiert, die strahlenbiologisch bedeutsam sind und möglicherweise als immunologische Marker eine Rolle spielen. An Milzproben werden die im Projekt 'ZISS' identifizierten Proteine, die möglicherweise als Kandidaten für Strahlenempfindlichkeit angesehen werden können, verifiziert. In kryokonservierten Lebern werden Änderungen in der Protein- und Phosphoproteinexpression mittels Proteomics untersucht.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Zentrum Informatik, Statistik und Epidemiologie, Institut für Bioinformatik durchgeführt. Ziel des Projekts ist es, eine integrierte Teststrategie (ITS) für die Risikobewertung von humaner Atemwegs-Toxizität als Ersatz für Tierversuche zu entwickeln. Es werden Chemikalien mit unterschiedlicher Wirkungsweise ausgewählt und mit zellulären menschlichen in vitro Systemen getestet, um Routen-spezifische Biomarker zu identifizieren. Genomweite Transkriptom-Analysen nebst Data-Mining und QSAR Prognosen werden in diesen Modellen ausgeführt und mit Methoden der Bioinformatik ausgewertet. Ferner werden strukturell verwandte Chemikalien getestet, um die Möglichkeit zu untersuchen, ob das Testsystem cross reads unterstützt. Das Institut für Bioinformatik an der UMG beteiligt sich an WP 1: Identifizierung von 3 Verbindungen mit unterschiedlichen Wirkmechanismus und jeweils 2 'ähnlichen' Verbindungen durch Datenbank-Recherchen und Transkriptom-Analysen; hier wird in erster Linie das regulatorische Netzwerk der in Frage stehenden Zelltypen beigesteuert (s. WP5), auf dessen Grundlage Partner 6 (geneXplain) Schlüsselregulatoren für die weitere Analyse und Selektion identifiziert. Der Hauptbeitrag liegt bei WP5: Identifizierung der relevanten toxischen Mechanismen und Entwicklung eines ITS-Konzepts: Integration und upstream-Analyse der Transkriptom-Daten, Identifizierung von potentiellen Master-Regulatoren und Biomarkern. Es werden regulatorische Netzwerke konstruiert (Task 5.1.1). Darüber hinaus wird Input zu allen weiteren Aufgaben in WP5 geleistet.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen (JKI) - Institut für Epidemiologie und Pathogendiagnostik durchgeführt. Projektziel: ORDIAmur soll basierend auf dem Verständnis der Prozesse, die zur Nachbaukrankheit führen, Maßnahmen zu deren Überwindung entwickeln. Auf Seiten des Bodens sind Strategien zur Wiederherstellung von Organismengemeinschaften das Ziel, auf Seiten der Pflanze sollen tolerante Unterlagen entwickelt werden. Hintergrund: Die Nachbaukrankheit, auch Bodenmüdigkeit genannt, ist im Pflanzenbau seit Jahrhunderten bekannt, die Ursachen sind jedoch noch nicht erforscht. Schlechtes vegetatives Wachstum, gestauchter Habitus und verminderte Erträge sind ihre sichtbaren Symptome. Bei krautigen Pflanzen mit kurzer Kulturzeit wird sie vor allem durch Fruchtfolge und Flächenwechsel überwunden. Diese Möglichkeiten bestehen bei Gehölzen oft nicht. Die Nachbaukrankheit ist bei Rosaceen, aber auch im Weinbau, in Vermehrungs- und Produktionsbetrieben ein zunehmendes Problem, das derzeit durch chemische Bodenentseuchung abgeschwächt wird. Die dazu verwendeten Mittel sind umweltschädlich, so dass die Entwicklung alternativer Ansätze zur langfristigen Erhaltung der Bodengesundheit unerlässlich ist. Ergebnisausblick: 1. Vorhersage des Vorhandenseins oder des Ausmaßes der Nachbaukrankheit anhand von Biotests, Pflanzen- und Bodenparametern. - 2. Überwindung der Nachbaukrankheit durch: - Maßnahmen zur Erhöhung der mikrobiellen Diversität des Bodens - Züchtung von Unterlagen mit Toleranz gegenüber der Nachbaukrankheit - Inokulation von Pflanzen mit förderlichen Endophyten zur aktiven Immunisierung. - 3. Implementierung der anwendbaren Innovationen bei der Betrachtung sozio-ökonomischer Gegebenheiten. - 4. Transfer der Ergebnisse aus ORDIAmur in die Öffentlichkeit (Internetplattform).
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität München, Klinikum rechts der Isar, Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie durchgeführt. Das Ziel des vorliegenden Projektes ist es, die Wirkung niedriger, mittlerer und hoher Dosen ionisierender Strahlung in einem Bereich zwischen 0,2 Gy und 16 Gy auf mikrovaskuläre Endothelzellen (mECs) gewonnen aus unterschiedlichen Normalgeweben zu studieren. Im Besonderen sollen die Interaktionen zwischen mikrovaskulären ECs und Immuneffektorzellen in vitro und im Mausmodell untersucht werden. Wir werden uns auf Herz, Subkutis, Leber (Sievert et al. 2014; Hildebrandt et al. 1998) und die Lunge als Hochrisiko-Organe konzentrieren. Aufklärung der funktionellen und phänotypischen Änderungen von pathogener Relevanz in mikrovaskulären Endothelzellen (mECs) isoliert aus Herz, Haut, Leber und Lunge (Sievert et al. 2014). Interaktion von mECs (nicht bestrahlt und bestrahlt) mit Subpopulationen von Leukozyten. Erfassung der histologischen und immunhistologischen Änderungen von nicht bestrahlten und mit niedrigen Dosen bestrahlten mECs. Vergleichende Proteom- und Transkriptom-Anlalyse von mECs aus nicht bestrahlten Geweben. Integrierung der Daten zu einem Modell über den biologischen Mechanismus der strahleninduzierten Pathogenese (Azimzadeh et al. 2015).
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Geschäftsbereich Sicherheit und Strahlenschutz (S) durchgeführt. The investigations will deepen our knowledge on the impact of radiation-induced complex DNA lesions with spinoffs for radiation protection and the development of new, advanced tumor therapy strategies. The DNA double-strand-break (DSB), which is defined as a rupture in the double-stranded DNA molecule, is the most critical DNA lesion and when un- or misrepaired may lead to transformation or cell killing. For a DSB the chance to be accurately repaired strongly depends on its complexity. This complexity is defined by the nature and number of chemical alterations involved, its clustering or location in chromatin regions of different accessibility, as well as its association with DNA replication. It is widely recognized that lesion complexity is a major determinant of many of the adverse effects of IR, but the risks associated with different levels of complexity and the role of complexity in the choice of DSB repair pathway remain conjectural. The latter is particularly relevant, as it is well-known that the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors. Therefore, pathway-choice will define the types and levels of possible errors and thus also the associated risk for genomic alterations. Here, we present a project designed to address the biological consequences of DSBs of different levels of complexity focusing on how complexity affects processing and the generation of processing-errors. In a highly coordinated effort, five expert Institutes and Clinics address specific facets of DSB complexity and cover in this way a spectrum of lesions encompassing all major candidates for adverse radiation effects. Importantly, the experimental design integrates a bioinformatics component analyzing the effect of DSB complexity on gene expression, as well as DNA sequence alterations from erroneous processing. The knowledge generated by the proposal will be important for our understanding of the mechanisms underpinning individual radiosensitivity differences, and relevant to radiation protection and individualized radiotherapy. The proposed research will generate an environment that will strengthen the participating groups and as a result the field of Radiation Biology in Germany. Most notably though, it will generate a unique environment for recruiting and training young investigators, as well for retaining in the field excellent graduate students as postdoctoral fellows.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Toxikologie und Experimentelle Medizin (ITEM) durchgeführt. ExITox-2 hat zum Ziel eine integrierte Teststrategie (IATA) zu entwickeln, die Tierversuche mit wiederholter inhalativer Verabreichung ersetzt. Das in ExITox-1 entwickelte Read Across (RAX) Konzept wird weiterentwickelt. Neben der Gruppe der Vinylester, werden vier neue Gruppen, die Lungenfibrose bzw. Entzündung verursachen, getestet. Neue Aspekte sind: Integration von in vitro Daten aus Toxv21; Abschätzung der Toxikokinetik mit Hilfe von PBPK- und QSAR Modellen; Unterscheidung von Genexpressionsveränderungen bei geringen und hohen Dosen; Analyse der microRNA; Bestätigung der Geneveränderungen durch RTqPCR. Mastersignalwege werden entwickelt und zellspezifische Antworten von Stressantworten unterschieden. Das Projekt gliedert sich in 6 Arbeitspakete (AP), zu denen ITEM wie folgt beiträgt: Die RAX Gruppen werden anhand der Lungeneffekte mit Hilfe der RepDose Datenbank ausgewählt. Chemische Ähnlichkeit, Daten aus Toxv21 und der PASS Software werden berücksichtigt (AP1). Die Absorption nach Inhalation wird mittels eines PBPK Models abgeschätzt. QSAR Modelle und experimentelle Daten werden soweit möglich berücksichtigt (AP2). Der apparenten Permeabilitätskoeffizient wird für die Leitstoffe der RAX-Gruppen bestimmt. Weiter werden A549 Zellen (AP3) und vitale Lungenschnitte (AP4) submerse oder luftgetragen wiederholt exponiert, um dosisabhängig Zytotoxizität zu testen, RNA zu isolieren und Expression der microRNA zu untersuchen. mRNA wird für genomweite Analysen zur Verfügung gestellt. Biomarker werden durch RTqPCR bestätigt (AP3). Die Ausschüttung relevanter Zytokine wird gemessen (AP4). Die experimentellen und modellierten Daten werden durch einen Vergleich mit den vorliegenden in vivo Daten in eine IATA integriert. Die Biomarkerinduktion wird untersucht, Hochdosiseffekte werden von ersten Veränderungen bei geringen Dosen unterschieden. Die biologischen Profile innerhalb und unter den RAX-Gruppen werden verglichen, Grenzen und Unsicherheiten der IATA dargestellt (AP6).
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Entwicklungsgenetik (IDG), Forschungsgruppe Molecular Eye Disease durchgeführt. In der Frage niedriger Dosen ionisierender Strahlen besteht dringender Forschungsbedarf sowohl hinsichtlich der Dosis-Wirkungs-Beziehungen als auch hinsichtlich der biologischen Mechanismen. Es wurde deshalb ein Projekt initiiert, bei dem die Wirkungen niedriger Strahlendosen über die gesamte Lebensspanne in Mäusen beiderlei Geschlechts analysiert wird. Die Tiere wurden einmalig im Alter von 10 Wochen mit Dosen zwischen 0 Gy und 0,5 Gy (60Co) bestrahlt; zunächst wurden die Auswirkungen auf das Auge und das Verhalten der Mäuse sowie pathologische Veränderungen betrachtet. Zu 4 Zeitpunkten (4 und 24 Stunden sowie 12 und 18 Monate nach der Bestrahlung) wurden biologische Proben verschiedener Organe, Blut und Plasma gesammelt und eingelagert. Um die Frage der genetischen Empfindlichkeit zu untersuchen, wurden neben Wildtyp-Mäusen auch heterozygote Mutanten einbezogen; die Mutation betrifft Ercc2, ein Gen, das für eine ATP-abhängige DNA-Helikase kodiert, die an der allgemeinen Transkription und DNA Reparatur beteiligt ist. Vielfältige molekulare und 'OMICS'-Analysen einschließlich einer systembiologischen sind Gegenstand dieses Antrags. Das Ziel des Verbundes ist es, ein ganzheitliches Verständnis der Wirkung niedriger Dosen ionisierender Strahlen auf einen Säugetierorganismus zu erhalten. Dazu werden auch cardio-vaskuläre Effekte, pathologische Veränderungen verschiedener Organe wie Augen, Darm, Lungen, Leber, Niere und Milz sowie Untersuchungen am Blut und Plasma untersucht. In diesen Organen werden globale Genexpressionsdaten gewonnen, so dass wir organspezifische Antworten auf ionisierende Strahlung rekonstruieren und auf bekannte Signalwegen abbilden können, um die informativen Knoten des Netzwerkes zu erkennen. Die geplante Studie ist die erste systembiologische Studie, die die ganze Spannbreite der Antworten der Maus auf niedrige Dosen ionisierender Strahlung erfasst und zugleich Hinweise auf genetisch definierte Unterschiede in der Strahlenempfindlichkeit erlaubt.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft und Raumfahrt e.V. (DLR), Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie durchgeführt. Gesundheitliche Relevanz von spezifischen Kontaminationen von Trinkwasser ist derzeit noch äußerst unvollständig. Das Ziel des Verbundvorhabens ToxBox ist es, in einem Leitfaden eine harmonisierte Teststrategie für ein gefährdungsbasiertes Risikomanagement von anthropogenen Spurenstoffen zu erarbeiten. TP 4: Ziel von SWITCH ist es, die genotoxische Wirkung der zu untersuchenden Proben in einem prokaryotischen System zu messen, das auf DNA-Schäden mit der Induktion eines enzymatischen Reparatursystems reagiert. Es sollen die primären durch Schadstoffe und -gemische hervorgerufenen Veränderungen am Erbgut quantitativ erfasst werden. TP 7: Ziel von NF-kB ist es, die toxikologische Potenz eines Belastungsszenariums zu ermitteln. Dazu werden rekombinante humane Reporterzelllinien, mit deren Hilfe die Aktivierung des Transkriptionsfaktors NF-kB visualisiert werden kann, verwendet. 2. Arbeitsplan: Die Zell-Linien werden mit verschiedenen Klassen von Genotoxinen und Umweltproben in unterschiedlichen Konzentrationen behandelt, die in den Screening-Experimenten der TP4 als Kandidaten mit einen möglichen Gefährdungspotential identifiziert wurden. Die Ergebnisse werden in Form von Dosiseffektbeziehungen dargestellt und übliche Kennzahlen zur Bestimmung eines toxischen Potentials (Induktionsfaktoren, Effektive Konzentrationen) werden daraus abgeleitet. Damit werden den regulativen Gremien für die Zukunft bedeutsame Informationen für die Entscheidungsfindung gegeben.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften, Professur für Pflanzenzüchtung durchgeführt. Drought stress during grain filling can result in reduced grain filland subsequent loss in grain yield. As part of GABI-GRAIN, this projectaims to identify novel exotic proteins associated with improved droughttolerance during grain filling in barley. To achieve this aim a set ofspring barley introgression lines (S42-ILs) that originate from thecross Scarlett (H. vulgare) x ISR42-8 (H. spontaneum) (Schmalenbach etal. 2008 ) were screened for drought tolerance during grain filling. Intotal 49 S42-ILs and Scarlett as the control genotype were grown in theglasshouse using an automated irrigation system. At 10 days postanthesis (DPA) the irrigation system was set to provide well-wateredand drought stress conditions. Plants were scored for physiologicaltraits including flowering time, grain maturity, biomass, number ofears, grains per ear, thousand grain weight, grain yield and harvestindex. This phenotype data was then used for line by trait associationstudies to identify quantitative trait loci (QTL). This analysisidentified exotic alleles associated with increased and also decreasedplant performance under drought stress. Furthermore, we could alsoconfirm several QTL detected in previous field experiments using thisS42-IL population. To understand the molecular mechanism controllingidentified QTL a proteomics study is underway. From selected droughttolerant S42-ILs and Scarlett that have been grown under well-wateredand drought stress conditions proteins will be extracted from grainsamples collected at 12, 16, 20 and 24 DPA. Differentially expressedproteins will then be detected using quantitative 2D gelelectrophoresis. Identified proteins associated with improved droughttolerance can then potentially be used as diagnostic bio-markers toassist in the selection of higher yielding barley lines under droughtconditions. Furthermore, this research will give a greaterunderstanding of the genetic and biochemical mechanisms that controldrought tolerance in barley.
Das Projekt "Bees in Europe and the decline of honeybee colonies (BEE DOC)" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Fachbereich Biologie, Institut für Zoologie, Arbeitsgruppe Molekulare Ökologie durchgeführt. The BEE DOC comprises a network of eleven partners from honeybee pathology, chemistry, genetics and apicultural extension aiming to improve colony helath of honeybees. The BEE DOC will empirically and experimentally fill knowledge gaps in honey bee pest and diseases, including the 'colony collapse disorder' and quantify the impact of ineractions between parasites, pathogens and pesticides on honey bee mortality. Specifically BEE DOC will show for two model parasites (Nosema and Varroa mites), three model viruses (Deformed Wing Virus, Black Queen Cell Virus, Israel Acute Paralysis Virus) and two model pestcides (fipronil, A-fluvalinate) how interactions affect individual bees and colonies in different European areas. The BEE DOC will use transcriptome anayses to explore host-pathogen-pesticide interaction and identify novel genes for disease resistance. The BEE DOC will specifically address sublethal and chronic exposure to pesticides and screen how apicultural practices affect colony health. The BEE DOC will develop novel diagnostic screening methods and develop sustainable concepts for disease prevention using novel treatments and selection tools for resitant stock. The BEE DOC will be linked to various national and international ongoing European, North-, and Latin-American colony health monitoring and research programs, which will not only ensure a pan European but also a global visibility and the transfer of results to a world wide community of beekeepers.
Origin | Count |
---|---|
Bund | 151 |
Type | Count |
---|---|
Förderprogramm | 151 |
License | Count |
---|---|
open | 151 |
Language | Count |
---|---|
Deutsch | 151 |
Englisch | 41 |
Resource type | Count |
---|---|
Keine | 63 |
Webseite | 88 |
Topic | Count |
---|---|
Boden | 104 |
Lebewesen & Lebensräume | 149 |
Luft | 80 |
Mensch & Umwelt | 151 |
Wasser | 78 |
Weitere | 151 |